Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047101    DOI: 10.1088/1674-1056/acb9ef

First-principles study of the bandgap renormalization and optical property of β-LiGaO2

Dangqi Fang(方党旗)
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The $\beta$-LiGaO$_{2}$ with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor. In this work, using the non-adiabatic Allen-Heine-Cardona approach, we investigate the bandgap renormalization arising from electron-phonon coupling. We find a sizable zero-point motion correction of $-0.362 $ eV to the gap at $\varGamma $, which is dominated by the contributions of long-wavelength longitudinal optical phonons. The bandgap of $\beta $-LiGaO$_{2}$ decreases monotonically with increasing temperature. We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation. The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects, in qualitative agreement with the experiment. The contributing interband transitions and the binding energy for the excitonic states are analyzed.
Keywords:  wide-bandgap semiconductor      electron-phonon coupling      bandgap renormalization      optical spectrum      first-principles calculation  
Received:  01 November 2022      Revised:  18 December 2022      Accepted manuscript online:  27 December 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.80.Jc (Other crystalline inorganic semiconductors)  
Fund: Project support from the National Natural Science Foundation of China (Grant No. 11604254) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-240). We also acknowledge the HPCC Platform of Xi'an Jiaotong University for providing the computing facilities.
Corresponding Authors:  Dangqi Fang     E-mail:

Cite this article: 

Dangqi Fang(方党旗) First-principles study of the bandgap renormalization and optical property of β-LiGaO2 2023 Chin. Phys. B 32 047101

[1] Chou M M C, Chen C, Hang D R and Yang W T 2011 Thin Solid Films 519 5066
[2] Chou M M C, Hang D R, Chen C and Liao Y H 2011 Thin Solid Films 519 3627
[3] Xu K, Deng P, Xu J, Zhou G, Liu W and Tian Y 2000 J. Cryst. Growth 216 343
[4] Li G, Mu S and Shih S J 2010 Materials Science and Engineering: B 170 9
[5] Omata T, Tanaka K, Tazuke A, Nose K and Otsuka-Yao-Matsuo S 2008 J. Appl. Phys. 103 083706
[6] Suzuki I, Mizuno Y and Omata T 2019 Inorg. Chem. 58 4262
[7] Boonchun A, Dabsamut K and Lambrecht W R L 2019 J. Appl. Phys. 126 155703
[8] Dabsamut K, Boonchun A and Lambrecht W R L 2020 J. Phys. D: Appl. Phys. 53 274002
[9] Johnson N W, McLeod J A and Moewes A 2011 J. Phys.: Condens. Matter 23 445501
[10] Chen C, Li C A, Yu S H and Chou M M C 2014 J. Cryst. Growth 402 325
[11] Tumėnas S, Mackonis P, Nedzinskas R, Trinkler L, Berzina B, Korsaks V, Chang L and Chou M M C 2017 Appl. Surf. Sci. 421 837
[12] Trinkler L, Trukhin A, Berzina B, Korsaks V, Ščajev P, Nedzinskas R, Tumėnas S, Chou M M C, Chang L and Li C A 2017 Opt. Mater. 69 449
[13] Boonchun A and Lambrecht W R L 2010 Phys. Rev. B 81 235214
[14] Radha S K, Ratnaparkhe A and Lambrecht W R L 2021 Phys. Rev. B 103 045201
[15] Karsai F, Engel M, Flage-Larsen E and Kresse G 2018 New J. Phys. 20 123008
[16] Monserrat B, Dreyer C E and Rabe K M 2018 Phys. Rev. B 97 104310
[17] Nery J P, Allen P B, Antonius G, Reining L, Miglio A and Gonze X 2018 Phys. Rev. B 97 115145
[18] Miglio A, Brousseau-Couture V, Godbout E, Antonius G, Chan Y H, Louie S G, Côté M, Giantomassi M and Gonze X 2020 npj Comput. Mater. 6 167
[19] Zacharias M and Giustino F 2020 Phys. Rev. Research 2 013357
[20] Shang H, Zhao J and Yang J 2021 J. Phys. Chem. C 125 6479
[21] Verdi C and Giustino F 2015 Phys. Rev. Lett. 115 176401
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[28] Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042
[29] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582
[30] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39
[31] Giustino F 2017 Rev. Mod. Phys. 89 015003
[32] Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102
[33] Eiguren A and Ambrosch-Draxl C 2008 Phys. Rev. B 78 045124
[34] Brown-Altvater F, Antonius G, Rangel T, Giantomassi M, Draxl C, Gonze X, Louie S G and Neaton J B 2020 Phys. Rev. B 101 165102
[35] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[36] Nishiwaki M and Fujiwara H 2020 Comput. Mater. Sci. 172 109315
[37] Fang D 2021 J. Appl. Phys. 130 225703
[38] Albrecht S, Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510
[39] Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 81 2312
[40] Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C and Kresse G 2016 Sci. Rep. 6 28618
[41] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[42] Cardona M and Thewalt M L W 2005 Rev. Mod. Phys. 77 1173
[43] Fröhlich H 1954 Advances in Physics 3 325
[44] Bhosale J, Ramdas A K, Burger A, Muñoz A, Romero A H, Cardona M, Lauck R and Kremer R K 2012 Phys. Rev. B 86 195208
[45] Roessler D M and Walker W C 1967 Phys. Rev. 159 733
[46] Fuchs F, Rödl C, Schleife A and Bechstedt F 2008 Phys. Rev. B 78 085103
[47] Filip M R, Haber J B and Neaton J B 2021 Phys. Rev. Lett. 127 067401
[48] Whited R C, Flaten C J and Walker W C 1973 Solid State Commun. 13 1903
[49] Grosso G and Pastori Parravicini G 2014 Solid State Physics, 2nd edn. (Amsterdam: Academic Press) p. 295
[50] Sio W H, Verdi C, Poncé S and Giustino F 2019 Phys. Rev. B 99 235139
[51] Sio W H, Verdi C, Poncé S and Giustino F 2019 Phys. Rev. Lett. 122 246403
[52] Lafuente-Bartolome J, Lian C, Sio W H, Gurtubay I G, Eiguren A and Giustino F 2022 Phys. Rev. Lett. 129 076402
[53] Lafuente-Bartolome J, Lian C, Sio W H, Gurtubay I G, Eiguren A and Giustino F 2022 Phys. Rev. B 106 075119
[54] Marezio M 1965 Acta Crystallogr. 18 481
[1] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principlesand machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红), Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[2] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!