CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Synthesis and magnetotransport properties of Bi2Se3 nanowires |
Kang Zhang(张亢)1, Haiyang Pan(潘海洋)2, Zhongxia Wei(魏仲夏)2, Minhao Zhang(张敏昊)1, Fengqi Song(宋风麒)2, Xuefeng Wang(王学锋)1, Rong Zhang(张荣)1 |
1 National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Bi2Se3, as a three-dimensional topological insulator, has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry. Here we report the synthesis and characterization of high-quality single-crystalline Bi2Se3 nanowires. Bi2Se3 nanowires were synthesized by chemical vapor deposition (CVD) method via gold-catalyzed vapor-liquid-solid (VLS) mechanism. The structure and morphology were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. In magnetotransport measurements, the Aharonov-Bohm (AB) effect was observed in a nanowire-based nanodevice, suggesting the existence of surface states in Bi2Se3 nanowires.
|
Received: 06 April 2017
Revised: 11 May 2017
Accepted manuscript online:
|
PACS:
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921103 and 2013CB921103), the National Natural Science Foundation of China (Grant Nos. 11274003 and 91421109), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China. |
Corresponding Authors:
Xuefeng Wang
E-mail: xfwang@nju.edu.cn
|
Cite this article:
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣) Synthesis and magnetotransport properties of Bi2Se3 nanowires 2017 Chin. Phys. B 26 096101
|
[1] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[2] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[3] |
Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[4] |
Moore J E and Balents L 2007 Phys. Rev. B 75 121306
|
[5] |
Fu L and Kane C L 2007 Phys. Rev. B 76 045302
|
[6] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[7] |
Takagaki Y, Jenichen B, Jahn U, Ramsteiner M and Friedland K J 2012 Phys. Rev. B 85 115314
|
[8] |
Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
|
[9] |
Qi X L, Li R D, Zang J D and Zhang S C 2009 Science 323 1184
|
[10] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[11] |
Zhang J Y, Zhao B, Zhou T and Yang Z Q 2016 Chin. Phys. B 25 117308
|
[12] |
He K, Ma X C, Chen X, Li L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 67305
|
[13] |
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
|
[14] |
Pan H, Zhang K, Wei Z, Wang J, Han M, Song F, Wang X, Wang B and Zhang R 2017 Appl. Phys. Lett. 110 053108
|
[15] |
Dufouleur J, Veyrat L, Teichgräber A, Neuhaus S, Nowka C, Hampel S, Cayssol J, Schumann J, Eichler B, Schmidt O G, Büchner B and Giraud R 2013 Phys. Rev. Lett. 110 186806
|
[16] |
Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
|
[17] |
Qu F, Yang F, Chen J, Shen J, Ding Y, Lu J, Song Y, Yang H, Liu G, Fan J, Li Y, Ji Z, Yang C and Lu L 2011 Phys. Rev. Lett. 107 016802
|
[18] |
Yan Y, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Chen J J, Meng J, Wu X S and Yu D P 2013 Sci. Rep. 3 1264
|
[19] |
Lu H Z and Shen S Q 2016 Chin. Phys. B 25 117202
|
[20] |
Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J and Ong N P 2009 Phys. Rev. Lett. 103 246601
|
[21] |
Eto K, Ren Z, Taskin A A, Segawa K and Ando Y 2010 Phys. Rev. B 81 195309
|
[22] |
Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C and Yu D P 2015 Nanoscale 7 16687
|
[23] |
Liu Y, Ma Z, Zhao Y F, Singh M and Wang J 2013 Chin. Phys. B 22 67302
|
[24] |
Cho S, Kim D, Syers P, Butch N P, Paglione J and Fuhrer M S 2012 Nano Lett. 12 469
|
[25] |
Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C and Cui Y 2010 Nano Lett. 10 329
|
[26] |
Cha J J, Claassen M, Kong D, Hong S S, Koski K J, Qi X L and Cui Y 2012 Nano Lett. 12 4355
|
[27] |
Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nano 6 216
|
[28] |
Lee S, In J, Yoo Y, Jo Y, Park Y C, Kim H J, Koo H C, Kim J, Kim B and Wang K L 2012 Nano Lett. 12 4194
|
[29] |
Safdar M, Wang Q, Mirza M, Wang Z, Xu K and He J 2013 Nano Lett. 13 5344
|
[30] |
Hamdou B, Gooth J, Dorn A, Pippel E and Nielsch K 2013 Appl. Phys. Lett. 103 193107
|
[31] |
Li Z, Chen T, Pan H, Song F, Wang B, Han J, Qin Y, Wang X, Zhang R, Wan J, Xing D and Wang G 2012 Sci. Rep. 2 595
|
[32] |
Wei Q, Su Y, Yang C J, Liu Z G, Xu H N, Xia Y D and Yin J 2011 J. Mater. Sci. 46 2267
|
[33] |
Scanlon D O, King P D C, Singh R P, de la Torre A, Walker S M, Balakrishnan G, Baumberger F and Catlow C R A 2012 Adv. Mater. 24 2154
|
[34] |
Ren Z, Taskin A A, Sasaki S, Segawa K and Ando Y 2011 Phys. Rev. B 84 075316
|
[35] |
Kratzer P, Sakong S and Pankoke V 2012 Nano Lett. 12 943
|
[36] |
Dubrovskii V G and Sibirev N V 2008 Phys. Rev. B 77 035414
|
[37] |
Dubrovskii V G, Sibirev N V, Harmand J C and Glas F 2008 Phys. Rev. B 78 235301
|
[38] |
Hamdou B, Kimling J, Dorn A, Pippel E, Rostek R, Woias P and Nielsch K 2013 Adv. Mater. 25 239
|
[39] |
Givargizov E I 1975 J. Cryst. Growth 31 20
|
[40] |
Milewski J V, Gac F D, Petrovic J J and Skaggs S R 1985 J. Mater. Sci. 20 1160
|
[41] |
Mlack J T, Rahman A, Johns G L, Livi K J T and Marković N 2013 Appl. Phys. Lett. 102 193108
|
[42] |
Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
|
[43] |
Yan Y, Zhou X, Jin H, Li C Z, Ke X, Van Tendeloo G, Liu K, Yu D, Dressel M and Liao Z M 2015 Acs Nano 9 10244
|
[44] |
Richter W and Becker C R 1977 Phys. Status Solidi B 84 619
|
[45] |
Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
|
[46] |
Huber T E, Celestine K and Graf M J 2003 Phys. Rev. B 67 245317
|
[47] |
Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601
|
[48] |
Fu Z G, Zhang P and Li S S 2011 Appl. Phys. Lett. 99 243110
|
[49] |
Jens H B and Joel E M 2013 Rep. Prog. Phys. 76 056501
|
[50] |
Bardarson J H, Brouwer P W and Moore J E 2010 Phys. Rev. Lett. 105 156803
|
[51] |
Wang L X, Li C Z, Yu D P and Liao Z M 2016 Nat. Commun. 7 10769
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|