Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020305    DOI: 10.1088/1674-1056/ac9046
GENERAL Prev   Next  

Hall conductance of a non-Hermitian two-band system with k-dependent decay rates

Junjie Wang(王俊杰)1, Fude Li(李福德)1, and Xuexi Yi(衣学喜)1,2,†
1 Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China;
2 Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
Abstract  Two-band model works well for Hall effect in topological insulators. It turns out to be non-Hermitian when the system is subjected to environments, and its topology characterized by Chern numbers has received extensive studies in the past decades. However, how a non-Hermitian system responses to an electric field and what is the connection of the response to the Chern number defined via the non-Hermitian Hamiltonian remains barely explored. In this paper, focusing on a k-dependent decay rate, we address this issue by studying the response of such a non-Hermitian Chern insulator to an external electric field. To this aim, we first derive an effective non-Hermitian Hamiltonian to describe the system and give a specific form of k-dependent decay rate. Then we calculate the response of the non-Hermitian system to a constant electric field. We observe that the environment leads the Hall conductance to be a weighted integration of curvature of the ground band and hence the conductance is no longer quantized in general. And the environment induces a delay in the response of the system to the electric field. A discussion on the validity of the non-Hermitian model compared with the master equation description is also presented.
Keywords:  Hall conductance      non-Hermitian      topological insulators  
Received:  08 March 2022      Revised:  17 August 2022      Accepted manuscript online:  08 September 2022
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: The authors acknowledge Hongzhi Shen and Weijun Cheng for helpful comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12175033 and 12147206).
Corresponding Authors:  Xuexi Yi     E-mail:  yixx@nenu.edu.cn

Cite this article: 

Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜) Hall conductance of a non-Hermitian two-band system with k-dependent decay rates 2023 Chin. Phys. B 32 020305

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Yang Z, Chiu C K, Fang C and Hu J 2020 Phys. Rev. Lett. 124 186402
[3] Bernevig B A and Hughes T L 2013 Topological insulators and topeological superconductors (Princeton: Princeton University Press)
[4] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[5] Thouless D J, Kohmoto M, Nightingale M P and Nijs M den 1982 Phys. Rev. Lett. 49 405
[6] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[7] Haldane F D M 1980 Phys. Rev. Lett. 45 494
[8] San-Jose P, Cayao J, Prada E and Aguado R 2016 Sci. Rep. 6 21427
[9] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[10] Rudner M S and Levitov L S 2009 Phys. Rev. Lett. 102 065703
[11] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[12] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[13] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[14] Yao S Y, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[15] Xiong Y 2018 J. Phys. Commun. 2 035043
[16] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 10 1038
[17] Yang Z S, Zhang K, Fang C and Hu J P 2020 Phys. Rev. Lett. 125 226402
[18] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[19] Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401(R)
[20] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103(R)
[21] Li L H, Lee C H and Gong J B 2020 Phys. Rev. Lett. 124 250402
[22] Hofmann T, Helbig T, Schindler F, Salgo N, Brzezińska M, Greiter M, Kiessling T, Wolf D, Vollhardt A, Kabaši A, Lee Ching Hua, Bilušić A, Thomale R and Neupert T 2020 Phys. Rev. Res. 2 023265
[23] Torres Luis E F Foa 2020 J. Phys. Mater. 3 014002
[24] Zhang K, Yang Z S and Fang C 2020 Phys. Rev. Lett. 125 126402
[25] Yi Y F and Yang Z S 2020 Phys. Rev. Lett. 125 186802
[26] Lee T E 2016 Phys. Rev. Lett. 116 133903
[27] Kawabata K, Shiozaki K and Ueda M 2018 Phys. Rev. B 98 165148
[28] Lieu S 2018 Phys. Rev. B 97 045106
[29] Lieu S 2018 Phys. Rev. B 98 115135
[30] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[31] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297
[32] Liang S D and Huang G Y 2013 Phys. Rev. A 87 012118
[33] Wang J H, Tao Y L and Xu Y 2022 Chin. Phys. Lett. 39 010301
[34] Liu H F, Su Z X, Zhang Z Q and Jiang H 2020 Chin. Phys. B 29 050502
[35] Hirsbrunner M R, Philip T M and Gilbert M J 2019 Phys. Rev. B 100 081104(R)
[36] Chen Y and Zhai H 2018 Phys. Rev. B 98 245130
[37] Philip T M, Hirsbrunner M R and Gilbert M J 2018 Phys. Rev. B 98 155430
[38] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767
[39] Schomerus H 2020 Phys. Rev. Res. 2 013058
[40] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[41] Lee C H, Li L H, Thomale Ronny and Gong J B 2020 Phys. Rev. B 102 085151
[42] Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N and Khajavikhan M 2018 Phys. Rev. Lett. 120 113901
[43] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009
[44] Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
[45] Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H and Feng L 2018 Nat. Commun. 9 981
[46] Pan M, Zhao H, Miao P, Longhi S and Feng L 2018 Nat. Commun. 9 1308
[47] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433
[48] Rigolin G, Ortiz G and Ponce V H 2008 Phys. Rev. A 78 052508
[49] Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J 2003 The geometric phase in quantum systems (Berlin: Springer)
[50] Ibáñez S and Muga J G 2014 Phys. Rev. A 89 033403
[51] Weng H W, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227
[52] Peierls R 1993 Z. Physik 80 763
[53] Zhang W Q, Shen H Z and Yi X X 2018 Sci. Rep. 8 1475
[54] Shen H Z, Zhang S S, Dai C M and Yi X X 2018 J. Phys. A: Math. Theor. 51 065302
[55] Orszag M 2000 Quantum Optics (Berlin: Springer)
[56] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[57] Dürr S, Garcia-Ripoll J J, Syassen N, Bauer D M, Lettner M, Cirac J I and Rempe G 2009 Phys. Rev. A 79 023614
[58] Reiter F and Sorensen A S 2012 Phys. Rev. A 85 032111
[59] Reiter F, Kastoryano M J and Sorensen A S 2012 New J. Phys. 14 053022
[60] Lee T E and Chan C K 2014 Phys. Rev. X 4 041001
[61] Ashida Y, Furukawa S and Ueda M 2016 Phys. Rev. A 94 053615
[62] Ashida Y, Furukawa S and Ueda M 2017 Nat. Commun. 8 15791
[63] Yamamoto K, Nakagawa M, Adachi K, Takasan K, Ueda M and Kawakami N 2019 Phys. Rev. Lett. 123 123601
[64] Ziesche P 1987 J. Phys. A: Math. Gen. 20 2859
[65] Dattoli G and Torre A 1990 Phys. Rev. A 42 1467
[66] Li D X, Shen H Z, Liu H D and Yi X X Sci. Rep. 8 1475
[67] Shen H Z, Wang W and Yi X X 2014 Sci. Rep. 10 1038
[68] Qi L X, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[69] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
[1] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[4] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[5] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[8] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[9] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
[10] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[11] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[12] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[13] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[14] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[15] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
No Suggested Reading articles found!