Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126201    DOI: 10.1088/1674-1056/ac0524
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Synthesis of flower-like WS2 by chemical vapor deposition

Jin-Zi Ding(丁金姿)1, Wei Ren(任卫)2,†, Ai-Ling Feng(冯爱玲)1,‡, Yao Wang(王垚)2, Hao-Sen Qiao(乔浩森)2, Yu-Xin Jia(贾煜欣)2, Shuang-Xiong Ma(马双雄)2, and Bo-Yu Zhang(张博宇)2
1 Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China;
2 School of Science, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
Abstract  Flower-like tungsten disulfide (WS2) with a diameter of 5-10 μm is prepared by chemical vapor deposition (CVD). Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy are used to characterize its morphological and optical properties, and its growth mechanism is discussed. The key factors for the formation of flower-like WS2 are determined. Firstly, the cooling process causes the generation of nucleation dislocations, and then the "leaf" growth of flower-like WS2 is achieved by increasing the temperature.
Keywords:  flower-like WS2      chemical vapor deposition (CVD)      optical property      growth mechanism  
Received:  09 February 2021      Revised:  10 May 2021      Accepted manuscript online:  26 May 2021
PACS:  62.23.Kn (Nanosheets)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.-a (Thin film structure and morphology)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-029).
Corresponding Authors:  Wei Ren, Ai-Ling Feng     E-mail:  renwei@xupt.edu.cn;ailing@mail.xjtu.edu.cn

Cite this article: 

Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇) Synthesis of flower-like WS2 by chemical vapor deposition 2021 Chin. Phys. B 30 126201

[1] Tenne R, Margulis L, Genut M and Hodes G 1992 Nature 360 444
[2] Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. Int. Ed. 49 4059
[3] Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B 28 37803
[4] Cai Y, Li W, Feng Y, Zhao J S, Bai G, Xu J and Li J Z 2020 Chin. Phys. B 29 110701
[5] Wang X, Li L, Li J P and Wang Y G 2017 Chin. Phys. B 26 44203
[6] Cao S X, Liu T M, Hussain S, Zeng W, Peng X H and Pan F S 2014 Mater. Lett. 129 205
[7] Sharma S, Jaisi B P, Sharma K P, Araby M I, Kalita G and Tanemura M 2018 Phys. Status Solidi A 215 1700566
[8] Ahmadi A, Shoushtari M Z and Farbod M 2019 Journal of Materials Science:Materials in Electronics 30 6342
[9] Cao S X, Zhao C, Peng L L and Han T 2016 Journal of Materials Science:Materials in Electronics 27 3821
[10] Piao M X, Chu J, Wang X, Chi Y, Zhang H, Li C L, Shi H F and Joo M K 2018 Nanotechnology 29 025705
[11] Bromley R A, Murray R B and Yoffe A D 1972 J. Phys. C:Solid State Phys. 5 759
[12] Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W and Xu X D 2013 Nat. Commun. 4 1474
[13] Mattheiss L F 1973 Phys. Rev. B 8 3719
[14] Zirak M, Zhao M, Moradlou O, Samadi M, Sarikhani N, Wang Q, Zhang H L and Moshfegh A Z 2015 Solar Energy Materials and Solar Cells 141 260
[15] Zirak M, Akhavan O, Moradlou O, Nien Y T and Moshfegh A Z 2014 J. Alloys Compd. 590 507
[16] Sarma P V, Patil P D, Barman P K, Kini R N and Shaijumon M M 2016 RSC Adv. 6 376
[17] Kumar P and Balakrishnan V 2018 Appl. Surf. Sci. 436 846
[1] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[2] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[3] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[4] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[5] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[6] Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛). Chin. Phys. B, 2019, 28(1): 016301.
[7] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[8] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[9] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[10] Theoretical investigation of optical properties and band gap engineering for Zn1-xTMxTe(TM=Fe, Co) alloys by modified Becke—Johnson potential
Q Mahmood, M Yaseen, M Hassan, Shahid M Ramay, Asif Mahmood. Chin. Phys. B, 2017, 26(8): 087803.
[11] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[12] An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications
Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞). Chin. Phys. B, 2017, 26(11): 118103.
[13] Growth mechanism and modification of electronic and magnetic properties of silicene
Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军). Chin. Phys. B, 2015, 24(8): 087303.
[14] The influence of ablation products on the ablation resistance of C/C-SiC composites and the growth mechanism of SiO2 nanowires
Li Xian-Hui (李县辉), Yan Qing-Zhi (燕青芝), Mi Ying-Ying (米应映), Han Yong-Jun (韩永军), Wen Xin (温馨), Ge Chang-Chun (葛昌纯). Chin. Phys. B, 2015, 24(2): 026103.
[15] Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures
Zhang Feng (张锋), Wang Hai-Qian (王海千), Wang Song (王松), Wang Jing-Yang (汪竟阳), Zhong Zhi-Cheng (钟志成), Jin Ye (金叶). Chin. Phys. B, 2014, 23(9): 098105.
No Suggested Reading articles found!