Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048103    DOI: 10.1088/1674-1056/abea82
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD

Yudong Zhang(张玉栋)1,2, Jiale Tang(唐家乐)1,2, Yongjie Hu(胡永杰)1,2, Jie Yuan(袁杰)1,2, Lulu Guan(管路路)1,2, Xingyu Li(李星雨)1,2, Hushan Cui(崔虎山)2, Guanghui Ding(丁光辉)2, Xinying Shi(石新颖)1, Kaidong Xu(许开东)1,2, and Shiwei Zhuang(庄仕伟)1,†
1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; 2 Jiangsu Leuven Instruments Co. Ltd, Xuzhou 221300, China
Abstract  The inductively coupled plasma chemical vapor deposition (ICP-CVD) deposited silicon nitride (SiNx) thin film was evaluated for its application as the electrical insulating film for a capacitor device. In order to achieve highest possible dielectric strength of SiNx, the process parameters of ICP-CVD were carefully tuned to control hydrogen in SiNx films by means of tuning N2/SiH4 ratio and radio frequency (RF) power. Besides electrical measurements, the hydrogen content in the films was measured by dynamic secondary ion mass spectrometry (D-SIMS). Fourier transform infrared spectroscopy (FTIR) and micro Raman spectroscopy were used to characterize the SiNx films by measuring Si-H and N-H bonds' intensities. It was found that the more Si-H bonds lead to the higher dielectric strength.
Keywords:  dielectric strength      silicon nitride film      inductively coupled plasma chemical vapor deposition (ICP-CVD)      hydrogen content  
Received:  16 November 2020      Revised:  28 January 2021      Accepted manuscript online:  01 March 2021
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  85.30.-z (Semiconductor devices)  
  88.20.fn (Hydrogen)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Nos. 19KJD140002 and 19KJB140008), the Key Projects of Ministry of Science and Technology of China (Grant No. SQ2020YFF0407077), Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. 2020XKT786 and KYCX20_2337), the National Foreign Experts Bureau High-end Foreign Experts Project, China (Grant No. G20190114003), the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2018063), and the Scientific Research Program for Doctoral Teachers of JSNU (Grant No. 9212218113).
Corresponding Authors:  Corresponding author. E-mail: zhuangshiwei@jsnu.edu.cn   

Cite this article: 

Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟) Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD 2021 Chin. Phys. B 30 048103

1 Dergez D, Schalko J, Bittner A and Schmid U 2013 Appl. Surf. Sci. 284 348
2 Kshirsagar A, Nyaupane P, Bodas D, Duttagupta S P and Gangal S A 2011 Appl. Surf. Sci. 257 5052
3 Matsuoka M, Isotani S, Sucasaire W, Zambom L S and Ogata K 2010 Surface and Coatings Technology 204 2923
4 Syamsul M, Kitabayashi Y, Matsumura D, Saito T, Shintani Y and Kawarada H 2016 Appl. Phys. Lett. 109 203504
5 Dergez D, Bittner A, Schmid J S and U 2014 Procedia Engineering 87 100
6 Jatta S, Haberle K, Klein A, Schafranek R, Koegel B and Meissner P 2009 Plasma Process. Polym. 6 S582
7 Ogden S P, Lu T M and Plawsky J L 2016 Appl. Phys. Lett. 109 152904
8 Qi W and Zhao H 2015 J. Chem. Phys. 143 114708
9 Sahu B B, Yin Y and Han J G 2016 Phys. Plasmas 23 033512
10 Zaghloul U, Papaioannou G, Coccetti F, Pons P and Plana R 2009 Microelectronics Reliability 49 1309
11 Zhou H, Elgaid K, Wilkinson C and Thayne I 2006 Jpn. J. Appl. Phys. 45 8388
12 Zizka J, King S, Every A G and Sooryakumar R 2016 J. Appl. Phys. 119 144102
13 Borojevic N, Hameiri Z and Winderbaum S 2016 Appl. Phys. Lett. 109 021903
14 Palov A, Rakhimova T V, Krishtab M B and Baklanov M R 2015 J. Vac. Sci. Tech. B 33 020603
15 Engelhardt J, Hahn G and Terheiden B 2015 Energy Procedia 77 786
16 Kendall E J M 1971 Solid-State Electronics 14 791
17 Kuboi N, Tatsumi T, Minari H, Fukasawa M, Zaizen Y, Komachi J and Kawamura T 2017 J. Vac. Sci. Tech. A 35 061306
18 Lin C W, Yang M H and Lee YS 2012 Jpn. J. Appl. Phys. 51 01
19 Sundaram N, Lee G S, Goeckner M and Overzet L J 2015 J. Vac. Sci. Tech. B 33 042202
20 Sowińska M, Henkel K, Schmei\sser D, Kärkkänen I, Schneidewind J, Naumann F, Gruska B and Gargouri H 2016 J. Vac. Sci. Tech. A 34 01A127
21 Park B R, Lee J G, Choi W, Kim H, Seo K S and Cha H Y 2013 IEEE Electron Device Lett. 34 354
22 Kageyama S, Matsuki N and Fujiwara H 2013 J. Appl. Phys. 114 233513
23 Dergez D, Schalko J, Löffler S, Bittner A and Schmid U 2015 Sensors and Actuators A: Physical 224 156
24 Chang K M, Tsai J Y, Li C H, Yeh T H, Wang S W and Yang J Y 1996 J. Appl. Phys. 79 8503
25 Lau W S, Fonash S J and Kanicki J 1989 J. Appl. Phys. 66 2765
[1] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
No Suggested Reading articles found!