Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074219    DOI: 10.1088/1674-1056/26/7/074219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mechanically tunable metamaterials terahertz dual-band bandstop filter

Fangrong Hu(胡放荣)1,3, Xin Xu(胥欣)1, Peng Li(李鹏)1, Xinlong Xu(徐新龙)2, Yue'e Wang(王月娥)1
1 Guangxi Colleges and Universities Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;
2 Nanobiophotonic Center, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China;
3 Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  We experimentally demonstrate a mechanically tunable metamaterials terahertz (THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high resistance silicon substrate. The performance of the filter is simulated by finite-integration-time-domain (FITD) method. The sample is fabricated using a surface micromachining process and experimentally demonstrated using a THz time-domain-spectroscopy (TDS) system. The results show that, when the incident THz wave is polarized in y-axis, the filter has two intensive absorption peaks locating at 0.71 THz and 1.13 THz, respectively. The position of the high-frequency absorption peak and the amplitude of the low-frequency absorption peak can be simultaneously tuned by rotating the sample along its normal axis. The tunability of the high-frequency absorption peak is due to the shift of resonance frequency of two electrical dipoles, and that of the low-frequency absorption peak results from the effect of rotationally induced transparent. This tunable filter is very useful for switch, manipulation, and frequency selective detection of THz beam.
Keywords:  metamaterials      terahertz (THz) bandstop filter      mechanically tunable      rotationally induced transparent (RIT)  
Received:  12 January 2017      Revised:  24 March 2017      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  84.30.Vn (Filters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61265005 and 11574059),the Natural Science Foundation of Guangxi,China (Grant Nos.2015GXNSFDA19039 and 2014GXNSFAA118376),the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument,China (Grant Nos.YQ14114 and YQ15106) and the Innovation Project of Guangxi Graduate Education,China (Grant Nos.2016YJCX03 and 2016YJCX31).
Corresponding Authors:  Fangrong Hu     E-mail:  hufangrong@sina.com

Cite this article: 

Fangrong Hu(胡放荣), Xin Xu(胥欣), Peng Li(李鹏), Xinlong Xu(徐新龙), Yue'e Wang(王月娥) Mechanically tunable metamaterials terahertz dual-band bandstop filter 2017 Chin. Phys. B 26 074219

[1] Tonouchi M 2007 Nat. Photonics 1 97
[2] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F and Zimdars D 2005 Semicond. Sci. Tech. 20 S266
[3] Wang S 2016 IEEE Photonics Tech. L. 28 986
[4] Liu H B, Chen Y and Zhang X C 2007 J. Pharm. Sci. 96 927
[5] Shen Y C and Taday P F 2008 IEEE J. Sel. Top. Quant. 14 407
[6] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[7] Bao D Shen X P and Cui T J 2016 Acta Phys. Sin. 64 228701 (in Chinese)
[8] Sun X Y, Zheng L R, Li X N, Xu H, Liang X T, Zhang X P, Lu Y H, Lee Y P, Rhee J Y and Song W J 2016 Chin. Phys. B 25 057802
[9] Alves F, Kearney B, Grbovic D and Karunasiri G 2012 Opt. Express 20 21025
[10] Entezari M and Zavvari M 2016 IEEE Sen. J. 16 8916
[11] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[12] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R 2011 Opt. Lett. 36 945
[13] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D-Appl. Phys. 43 225102
[14] Kuznetsov S A 2012 Prog. Electromagn. Res. 122 93
[15] Teng C C, Zhou W, Zhuang Y Y and Chen H M 2016 Acta Phys. Sin. 65 024210 (in Chinese)
[16] Ibraheem I A I, Jansen C, Born N and Koch M 2011 Appl. Phys. Lett. 98 091107
[17] Zhang X Q, Gu J Q, Cao W, Han J G, Lakhtakia A and Zhang W L 2012 Opt. Lett. 37 906
[18] Lu M Z, Li W Z and Brown E R 2011 Opt. Lett. 36 1071
[19] Liang L J, Jin B B, Wu J B, Zhou G C, Zhang Y G, Tu X, Jia T, Jia X Q, Cao C H, Kang L, Xu W W and Chen J 2013 Sci. China-Inform. Sci. 56 120412
[20] Ozbey B and Aktas O 2011 Opt. Express 19 5741
[21] Fu Y H, Liu A Q, Zhu W M, Zhang X M, Tsai D P, Zhang J B, Mei T, Tao J F, Guo H C and Zhang X H 2011 Adv. Funct. Mater. 21 3589
[22] Li Q, Zhang X Q, Cao W, Lakhatakia A, O'hara J F, Han J G and Zhang W L 2012 Appl. Phys. A 107 285
[23] Pitchappa P, Ho C P, Qian Y, Dhakar L, Singh N and Lee C 2015 Sci. Rep. 5 11678
[24] Pitchappa P, Ho C P, Cong L Q, Singh R, Singh N and Lee C 2016 Adv. Opt. Mater. 4 391
[25] Ho C P, Pitchappa P and Lee C 2016 J. Appl. Phys. 119 153104
[26] http://www.cst.com
[27] Ye Y Q, Jin Y and He S L 2010 J. Opt. Soc. Am. B 27 498
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[7] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[10] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
No Suggested Reading articles found!