Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074218    DOI: 10.1088/1674-1056/26/7/074218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices

Fatma Nafaa Gaafer1, Yaxi Shen(沈亚西)1, Yugui Peng(彭玉桂)1, Aimin Wu(武爱民)2, Peng Zhang(张鹏)3, Xuefeng Zhu(祝雪丰)1,2,4
1 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
4 Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

Since the first observation of parity-time (PT) symmetry in optics, varied interesting phenomena have been discovered in both theories and experiments, such as PT phase transition and unidirectional invisibility, which turns PT-symmetric optics into a hotspot in research. Here, we report on the one-way localized Fabry–Pérot (FP) resonance, where a well-designed PT optical resonator may operate at exceptional points with bidirectional transparency but unidirectional field localization. Overtones of such one-way localized FP resonance can be classified into a blue shifted branch and a red shifted branch. Therefore, the fundamental resonant frequency is not the lowest one. We find that the spatial field distributions of the overtones at the same absolute order are almost the same, even though their frequencies are quite different.

Keywords:  optical lattices      parity-time symmetry      Fabry–            rot resonances      unidirectional field localization  
Received:  16 January 2017      Revised:  17 March 2017      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
  73.20.At (Surface states, band structure, electron density of states)  
Corresponding Authors:  Aimin Wu, Peng Zhang, Xuefeng Zhu     E-mail:  wuaimin@mail.sim.ac.cn;pengzhang@opt.ac.cn;xfzhu@hust.edu.cn

Cite this article: 

Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰) Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices 2017 Chin. Phys. B 26 074218

[1] Longhi S 2009 Phys. Rev. Lett. 103 123601
[2] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[3] West C T, Kottos T and Prosen T 2010 Phys. Rev. Lett. 104 054102
[4] Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902
[5] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[6] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[7] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[8] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J B E, Almeida V, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[9] Hodaei H, Miri M A, Heinrich M and Christodoulides D N 2014 Science 346 975
[10] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[11] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[12] Ramezani H, Li H K, Wang Y and Zhang X 2014 Phys. Rev. Lett. 113 263905
[13] Zhu X, Feng L, Zhang P, Yin X and Zhang X 2013 Opt. Lett. 38 2821
[14] Longhi S 2011 J. Phys. A:Math. Theor. 44 485302
[15] Zhu X F, Peng Y G and Zhao D G 2014 Opt. Express 22 18401
[16] Born M and Wolf E 1997 Principles of Optics (Cambridge:Cambridge University)
[17] Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
[18] Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802
[19] Zhu X, Liu S C, Xu T, Wang T H and Cheng J C 2010 Chin. Phys. B 19 044301
[20] Zhu X, Zou X Y, Zhou X W, Liang B and Cheng J C 2012 Chin. Phys. Lett. 29 014102
[1] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[2] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[3] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[4] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[5] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[6] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[7] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[8] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[9] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
[10] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[11] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[12] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[13] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[14] The effect of s-wave scattering length on self-trapping and tunneling phenomena of Fermi gases in one-dimensional accelerating optical lattices
Jia Wei (贾伟), Dou Fu-Quan (豆福全), Sun Jian-An (孙建安), Duan Wen-Shan (段文山). Chin. Phys. B, 2015, 24(4): 040307.
[15] A narrow-linewidth continuous wave Ho:YALO3 laser with Fabry–Perot etalons
Yang Xiao-Tao (杨晓涛). Chin. Phys. B, 2014, 23(3): 034207.
No Suggested Reading articles found!