Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038101    DOI: 10.1088/1674-1056/ac1e11
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide

Liying Jiang(蒋黎英)1,†, Yingting Yi(易颖婷)2,†, Yijun Tang(唐轶峻)3, Zhiyou Li(李治友)1, Zao Yi(易早)1,‡, Li Liu(刘莉)1, Xifang Chen(陈喜芳)1, Ronghua Jian(简荣华)4, Pinghui Wu(吴平辉)5,§, and Peiguang Yan(闫培光)6
1 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
2 College of Physics and Electronics, Central South University, Changsha 410083, China;
3 College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
4 School of Science, Huzhou University, Huzhou 313000, China;
5 College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, China;
6 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  In order to significantly improve the absorption efficiency of monolayer molybdenum disulfide (M-MoS2), an ultra-narrowband M-MoS2 metamaterial absorber was obtained through theoretical analysis and numerical calculation using the finite difference time domain method. The physical mechanism can be better analyzed through critical coupling and guided mode resonance. Its absorption rate at λ = 806.41 nm is as high as 99.8%, which is more than 12 times that of bare M-MoS2. From the simulation results, adjusting the geometric parameters of the structure can control the resonant wavelength range of the M-MoS2. In addition, we also found that the maximum quality factor is 1256.8. The numerical result shows that the design provides new possibilities for ultra-narrowband M-MoS2 perfect absorbers in the near-infrared spectrum. The results of this work indicate that the designed structure has excellent prospects for application in wavelength-selective photoluminescence and photodetection.
Keywords:  metamaterials      ultra-narrowband      high quality factor      critical coupling  
Received:  08 May 2021      Revised:  21 July 2021      Accepted manuscript online:  17 August 2021
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  02.70.Bf (Finite-difference methods)  
  33.20.Ea (Infrared spectra)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604311, 61705204, and 21506257), the Scientific Research Fund of SiChuan Provincial Science and Technology Department, China (Grant Nos. 2020YJ0137 and 2020YFG0467), the National Defense Science and Technology Innovation Special Zone Project of China (Grant No. 19-163-21-TS-001-067-01), and the College Students's Innovation and Entrepreneurship Training Program (Grant No. S202110619065).
Corresponding Authors:  Zao Yi, Pinghui Wu     E-mail:  yizaomy@swust.edu.cn;phwu@zju.edu.cn

Cite this article: 

Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光) A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide 2022 Chin. Phys. B 31 038101

[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Li Z Y, Yi Y T, Xu D Y, Yang H, Yi Z, Chen X F, Yi Y G, Zhang J G and Wu P H 2021 Chin. Phys. B 30 098102
[3] Deng Y, Cao G T, Yang H, Zhou X Q and Wu Y W 2018 Plasmonics 13 345
[4] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[5] Zhang M D, Xu S, Hou X Y, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N and Shan L 2021 Chin. Phys. B 30 017304
[6] Li Y F, Shi Q Z, Li Y, Song X J, Liu C C, Ta D and Wang W 2021 Chin. Phys. B 30 014302
[7] Su J, Yang H, Xu Y, Tang Y, Yi Z, Zheng F S, Zhao F, Liu L, Wu P H and Li H L 2021 Coatings 11 748
[8] Huang J, GuoL W, Lu W, ZhangY H, Shi Z, JiaY P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[9] Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H and Li H L 2020 Nanoscale 12 23077
[10] Geim A K and Grigorieva I V 2013 Nature 499 419
[11] Jiang L Y, Yi Y T, Yi Z, Yang H, Li Z Y, S J, Zhou Z G, Chen X F and Yi Y G 2021 Acta Phys. Sin. 70 128101 (in Chinese)
[12] Chen Z H, Chen H, Yin J K, Zhang R Y, Jile H, Xu D Y, Yi Z, Zhou Z G, Cai S S and Yan P G 2021 Diam. Relat. Mater. 116 108393
[13] Luo X, Liu Z M, Cheng Z Q, Liu J P, Lin Q and Wang L L 2018 Opt. Express 26 33918
[14] Janisch C, Song H, Zhou C, Lin Z, Elías A L, Ji D and Liu Z 2016 2D Mater. 3 025017
[15] Liu J T, Wang T B, Li X J and Liu N H 2014 J. Appl. Phys. 115 193511
[16] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M and Heinz T F 2014 Phys. Rev. B 90 205422
[17] Liu N, Liu H, Zhu S N and Giessen H 2009 Nat. Photon. 3 157
[18] Deng Y, Cao G, Wu Y, Zhou X and Liao W 2015 Plasmonics 10 1537
[19] Qi Y P, Zhang B H, Ding J H, Zhang T, Wang X X and Yi Z 2021 Chin. Phys. B 30 024211
[20] Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B and Pan M 2021 Diam. Relat. Mater. 111 108227
[21] Cao G, Li H, Deng Y, Zhan S, He Z and Li B 2014 Plasmonics 9 1163
[22] Chen Z H, Chen H, Jile H, Xu D Y, Yi Z, Lei Y L, Chen X F, Zhou Z G, Cai S S and Li G F 2021 Diam. Relat. Mater. 115 108374
[23] Lu H, Gan X, Mao D, Fan Y, Yang D and Zhao J 2017 Opt. Express 25 21630
[24] Guo C, Zhu Z, Yuan X, Ye W, Liu K, Zhang J, Xu Wei and Qin S 2016 Adv. Opt. Mater. 4 1955
[25] Li H, Qin M, Wang L, Zhai X, Ren R and Hu J 2017 Opt. Express 25 31612
[26] Cao J T, Yang G F, Gu Y, Fang X D, Lu N Y, Hua B and Yan X M 2019 Mater. Res. Express 6 015050
[27] Piper J R, Liu V and Fan S 2014 Appl. Phys. Lett. 104 251110
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[8] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[9] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[10] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[14] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[15] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
No Suggested Reading articles found!