ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network |
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿) |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China |
|
|
Abstract In this paper, we design a one-dimensional anti-PT-symmetric ring optical waveguide network (1D APTSPROWN). Using the three-material network equation and the generalized Floquet-Bloch theorem, we investigate its photonic mode distribution, and observe weak extremum spontaneous anti-PT-symmetric breaking points (WBPs) and strong extremum spontaneous anti-PT-symmetric breaking points (SBPs). Then the transmission spectrum is obtained by using the three-material network equation and the generalized eigenfunction method. The 1D APTSPROWN is found to generate ultra-strong transmission near SBPs and ultra-weak transmission near WBPs and SBPs, with the maximal and minimal transmissions being 4.08×1012 and 7.08×10-52, respectively. The maximal transmission has the same order of magnitude as the best-reported result. It is not only because the distribution of photonic modes generated by the 1D APTSROWN results in the coupling resonance and anti-resonance, but also because the 1D APTSROWN composed of materials whose real parts of refractive indices are positive and negative has two kinds of phase effects, which results in the resonance and anti-resonance effects in the same kind of photonic modes. This demonstrates that the anti-PT-symmetric and PT-symmetric optical waveguide networks are quite different, which leads to a more in-depth understanding of anti-PT-symmetric and PT-symmetric structures. This work has the potential for paving a new approach to designing single photon emitters, optical amplifiers, and high-efficiency optical energy saver devices.
|
Received: 21 January 2020
Revised: 22 February 2020
Accepted manuscript online:
|
PACS:
|
42.15.Eq
|
(Optical system design)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674107, 61475049, 11775083, 61875057, 61774062, and 61771205), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313374), and the Special Funds for the Cultivation of Guangdong College Students' Scientifific and Techonlogical Innovation, China (Grant No. pdjhb0139). |
Corresponding Authors:
Xiang-Bo Yang
E-mail: xbyang@scnu.edu.cn
|
Cite this article:
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿) Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network 2020 Chin. Phys. B 29 064201
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[2] |
Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201
|
[3] |
El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
|
[4] |
Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
|
[5] |
Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
[6] |
Zheng M C, Christodoulides D N, Fleischmann R and Kottos T 2010 Phys. Rev. A 82 010103
|
[7] |
Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
|
[8] |
Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
|
[9] |
Zhu X, Feng L, Zhang P, Yin X and Zhang X 2013 Opt. Lett. 38 2821
|
[10] |
Feng L, Zhu X, Yang S, Zhu H, Zhang P, Yin X, Wang Y and Zhang X 2014 Opt. Express 22 1760
|
[11] |
Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
|
[12] |
Zhang Z, Miao P, Sun J, Longhi S, Litchinitser N M and Feng L 2018 ACS Photon. 5 3016
|
[13] |
Longhi S 2010 Phys. Rev. A 82 031801
|
[14] |
Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902
|
[15] |
Ge L and Tuereci H E 2013 Phys. Rev. A 88 053810
|
[16] |
Yang F, Liu Y and You L 2017 Phys. Rev. A 96 053845
|
[17] |
Zhang X, Jiang T and Chan C T 2019 Light-Sci. Appl. 8 88
|
[18] |
Wang H, Kong W, Zhang P, Li Z and Zhong D 2019 Appl. Sci.-Basel 9 2738
|
[19] |
Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139
|
[20] |
Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
|
[21] |
Zhang Z Q, Wong C C, Fung K K, Ho Y L, Chan W L, Kan S C, Chan T L and Cheung N 1998 Phys. Rev. Lett. 81 5540
|
[22] |
Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 R9388
|
[23] |
Wang Z Y and Yang X 2007 Phys. Rev. B 76 235104
|
[24] |
Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
|
[25] |
Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
|
[26] |
Li M H, Liu Y Y and Zhang Z Q 2000 Phys. Rev. B 61 16193
|
[27] |
Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
|
[28] |
Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
|
[29] |
Vasseur J O, Djafari-Rouhani B, Dobrzynski L, Akjouj A and Zemmouri J 1999 Phys. Rev. B 59 13446
|
[30] |
Mir A, Akjouj A, Vasseur J O, Djafari-Rouhani B, Fettouhi N, El E H, Dobrzynski L and Zemmouri J 2003 J. Phys.: Condens. Matter 15 1593
|
[31] |
Stoytchev M and Genack A Z 1997 Phys. Rev. B 55 R8617
|
[32] |
Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R and Chen Y F 2013 Nat. Matter. 12 108
|
[33] |
Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
|
[34] |
Wu J and Yang X 2017 Opt. Express 25 27724
|
[35] |
Liu Y, Hou Z, Hui P M and Sritrakool W 1999 Phys. Rev. B 60 13444
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|