1 School of Physics and Microstructures, Zhengzhou University, Zhengzhou 450001, China; 2 College of Science, Henan University of Engineering, Zhengzhou 450001, China

Abstract Based on Dirac semimetal metamaterials, the tunable plasmon induced transparency (PIT) is investigated elaborately in this work. The designed unit cell consists of a strip and a square bracket, which is periodically aligned on the dielectric substrate. Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes, which can be dynamically tuned with Fermi energy. Namely, the transparency window demonstrates a distinct blue shift with a larger Fermi energy. Moreover, an on-to-off switch of the PIT transparency window is realized with different polarization angles. In addition, the accompanied slow light property is examined with the calculation of phase and group delay. Finally, a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing. Thus, this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers, sensors, and slow light devices.

(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)

Fund: Project supported by the Natural Science Foundation of Henan Provincial Educational Committee, China (Grant No. 21A140026).

Corresponding Authors:
Chunzhen Fan
E-mail: chunzhen@zzu.edu.cn

Cite this article:

Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏) Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials 2021 Chin. Phys. B 30 096103

[1] Liu C X, Liu P G, Yang C, Lin Y and Liu H Q 2019 Carbon142 354 [2] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2017 J. Opt.19 015001 [3] Wang J Q, Yuan B H, Fan C Z, He J N, Ding P, Xue Q Z and Liang E J 2013 Opt. Express21 25159 [4] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature409 490 [5] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater.8 758 [6] Zhao X, Yuan C, Lv W, Xu S and Yao J 2016 J. Mod. Opt.63 200 [7] He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics10 1115 [8] Liao C L, Fu G L, Xia S X, Li H J, Zhai X and Wang L L 2017 J. Mod. Opt.65 268 [9] Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Lai J J and Li H P 2018 Nanoscale10 19517 [10] Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N and Zhang X 2010 Appl. Phys. Lett.97 114101 [11] Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express19 5970 [12] Su H, Wang H, Zhao H, Xue T Y and Zhang J W 2017 Sci. Rep.7 17378 [13] Yang Y M, Kravchenko I I, Briggs D P and Valentine J 2014 Nat. Commun.5 5753 [14] Manjappa Z M, Chiam S Y, Cong L Q, Bettiol A A, Zhang W and Singh R J 2015 Appl. Phys. Lett.106 181101 [15] Jia W, Ren P W, Tian Y C and Fan C Z 2019 Chin. Phys. B28 026102 [16] Xiao S Y, Wang T, Liu T T, Yan X C, Li Z and Xu C 2018 Carbon126 271 [17] Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B27 124205 [18] Chen J, Xu R Q, Mao P, Zhang Y T, Liu Y J, Tang C J, Liu J Q and Chen T 2015 Plasmonics10 341 [19] Ren P W, Jia Y L, Jia W and Fan C Z 2019 J. Opt.21 105101 [20] Tassin P, Zhang L, Zhao R K, Jain A, Koschny T and Soukoulis C M 2012 Phys. Rev. Lett.109 187401 [21] Zhu L, Meng F Y, Dong L, Wu Q, Che B J, Gao J, Fu J H, Zhang K and Yang G H 2015 J. Appl. Phys.117 17D146 [22] Chen H, Xiong L, Hu F R and Xiang Y J 2021 Plasmonics4 1 [23] Hu B J, Huang M, Li P and Yang J J 2021 Acta Phys. Sin.70 044201 (in Chinese) [24] Jia Y L, Ren P W, Wang J Q, Fan C Z and Liang E J 2020 ES Energy Environ.7 4 [25] Fan C Z, Ren P W, Jia W, Jia Y L and Wang J Q 2019 Superlattice Microst.136 106295 [26] Wang T L, Zhang Y P, Zhang H Y and Cao M Y 2019 Opt. Mater. Express10 369 [27] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Cao M Y 2020 Opt. Express28 17434 [28] Kotov O V and Lozovik Y E 2016 Phys. Rev. B93 235417 [29] Chen H, Zhang H Y, Liu M D, Zhao Y K, Liu S D and Zhang Y P 2018 Opt. Commun.423 57 [30] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C and Hasan M Z 2014 Nat. Commun.5 3786 [31] Kang W J, Gao Q G, Dai L L, Zhang Y L, Zhang H Y and Zhang Y P 2020 Results Phys.19 103688 [32] Liu P F, Zhou L J, Tretiakd S and Wu L M 2017 J. Mater. Chem. C5 9181 [33] Wang Q S, Li C Z, Ge S F, Li J G, Lu W, Lai J W, Liu X F, Ma J C, Yu D P, Liao Z M and Sun D 2016 Nano Lett.17 834 [34] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater.14 280 [35] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun.146 351 [36] Chen H, Zhang H Y, Zhao Y K, Liu S D, Cao M Y and Zhang Y P 2018 Opt. Laser Technol.104 210 [37] Wang T L, Cao M Y, Zhang Y P and Zhang H Y 2019 Opt. Mater. Express9 1562 [38] Liu Y L, Du Y N, Liu W Q, Shen S M, Tan Q L, Xiong J J and Zhang W D 2019 Plasmonics14 1717 [39] Madhab N, Xu S Y, Sankar R, Nasser A, Bian G, Liu C, Ilya B, Chang T R, Jeng H T, Lin H, Arun B, Chou F C and Hasan M Z 2014 Nat. Commun.5 3786 [40] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science343 864 [41] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B88 125427 [42] Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E N and Zhang G Y 2010 Adv. Mater.22 4014 [43] Carlos C, Daniel V, Alexa M W, Andrea S C, Mollie A T, Joanna K, Nathan C G and Adam B B 2020 Nat. Commun.11 1244 [44] Murata Y, Calzolari A and Heun S 2018 J. Phys. Chem. C122 11591 [45] Wang J Q, Zhang J, Fan C Z, Mu K J, Liang E J and Ding P 2017 Opt. Commun.383 36 [46] He J N, Wang J Q, Ding P, Fan C Z and Liang E J 2015 J. Opt.17 055002 [47] Jia W, Ren P W, Jia Y L and Fan C Z 2019 J. Phys. Chem. C123 18560 [48] Fan C Z, Jia Y L, Ren P W and Jia W 2021 J. Phys. D: Appl. Phys.54 035107 [49] Wang J Q, Fan C Z, He J N, Ding, P, Liang E J and Xue Q Z 2013 Opt. Express21 2236 [50] He J N, Ding P, Wang J Q, Fan C Z and Liang E J 2015 J. Mod. Opt.62 1241 [51] Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M and Richter C A 2011 ACS Nano5 9144 [52] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Richard D P, Colombo L and Rodney S R 2009 Nano Lett.9 4359 [53] Guo S, Niu C H, Liang L, Chai K, Jia Y Q, Zhao F Y, Li Y, Zou B S and Liu R B 2016 Sci. Rep.6 1 [54] Kedzierski M A, Brignoli R, Quine K T and Brown J S 2017 Int. J. Refrig.74 3

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.