Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107303    DOI: 10.1088/1674-1056/ab9def
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media

Xiu Yang(杨秀)1, Tao Wei(魏涛)2, Feiliang Chen(陈飞良)3, Fuhua Gao(高福华)1,4, Jinglei Du(杜惊雷)1,4,†, and Yidong Hou(侯宜栋)1,
1 College of Physics, Sichuan University, Chengdu 610065, China
2 School of Medical Information Engineering, Jining Medical University, Jining 272067, China
3 Microsystem & Terahertz Research Center of CAEP, China Academy of Engineering Physics, Chengdu 610299, China
4 High Energy Density Physics of the Ministry of Education Key Laboratory, Sichuan University, Chengdu 610064, China
Abstract  

The strong chiroptical effect is highly desirable and has a wide range of applications in biosensing, chiral catalysis, polarization tuning, and chiral photo detection. In this work, we find a simple method to enhance the reflection circular dichroism (CDR) by placing the planar anisotropic chiral metamaterials (i.e., Z-shaped PACMs) on the interface of two media (i.e., Z-PCMI) with a large refractive index difference. The maximum reflection CDR from the complex system can reach about 0.840 when the refractive index is set as ntop = 4.0 and nbottom = 1.49, which is approximately three times larger than that of placing the Z-shaped PACMs directly on the substrate (i.e., Z-PCMS). While the minimum reflection CDR is 0.157 when the refractive index is set as nbottom = 1.49. So we can get a large available range of reflection CDR from –0.840 to –0.157. Meanwhile, the transmission CDT remains unchanged with the refractive index ntop increment. Our in-depth research indicates that the large reflection CDR is derived from the difference of non-conversion components of the planar anisotropic chiral metamaterials’ reflection matrices. In short, we provide a simple and practical method to enhance the chiroptical effect by changing the refractive index difference between two media without having to design a complex chiral structure.

Keywords:  chiroptical effect      chiral metamaterials      refractive index  
Received:  06 April 2020      Revised:  05 June 2020      Accepted manuscript online:  18 June 2020
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.-p (Wave optics)  
Corresponding Authors:  Corresponding author. E-mail: dujl@scu.edu.cn第一通讯作者 Corresponding author. E-mail: houyd@scu.edu.cn   
About author: 
†Corresponding author. E-mail: dujl@scu.edu.cn
‡Corresponding author. E-mail: houyd@scu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 11604227).

Cite this article: 

Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡ Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media 2020 Chin. Phys. B 29 107303

Fig. 1.  

Simulated reflection intensities of the Z-PCMI and Z-PCMS. (a) Schematic diagram of the Z-PCMI. The structure parameters are set as w1 = 115 nm, w2 = 85 nm, L1 = 125 nm, L2 = 105 nm, Px = 235 nm, and Py = 335 nm. The thickness h of the Z-shaped PACMs is 40 nm. (b) Schematic diagram of the Z-PCMS. (c)–(f) The simulated reflection intensities and CDR of the Z-PCMI and Z-PCMS, respectively.

Fig. 2.  

The distribution of the electric field of the (a), (b) Z-PCMI and (c), (d) Z-PCMS at the resonant wavelengths of 1582 nm and 578 nm under the illumination of LCP and RCP.

Fig. 3.  

The charge distribution of the (a), (b) Z-PCMI and (c), (d) Z-PCMS at the resonant wavelengths of 1582 nm and 578 nm under the illumination of the LCP and RCP.

Fig. 4.  

The influence of the refractive index ntop on CD peaks. (a), (b) The reflection CDR and transmission CDT intensities of the Z-PCMI for the light illuminating along –Z direction. (c), (d) The reflection CDR and transmission CDT intensities of the Z-PCMI for the light illuminating along +Z direction.

Fig. 5.  

(a), (c), (e) The reflection intensities and (b), (d), (f) transmission intensities of the Z-PCMI. The reflection and transmission intensities are obtained for the light illuminating along –Z direction.

Fig. 6.  

The dispersion relation of the off-diagonal elements (rxy and ryx) of the linear reflection coefficients. (a)–(c) The linear polarization light illuminates the Z-PCMI along –Z direction. (d)–(f) The linear polarization light illuminates the Z-PCMI along +Z direction.

Fig. 7.  

The reflection intensities of the G-PCMI and 卍-PCMI. (a) Schematic diagram of the G-PCMI, the structure parameters are set as W3 = 115 nm, L3 = 335 nm, Px = 235 nm, and Py = 335 nm. (b) Schematic diagram of the 卍-PCMI, the structure parameters are set as W4 = 50 nm, L4 = 250 nm, L5 = 125 nm, and Px = Py = 450 nm. The thickness h for both of the Ag-metal-grating and the 卍-shaped structures is 40 nm. The reflection intensities of (c), (e), (g) the G-PCMI; and (d), (f) (h) the 卍-PCMI. The refractive index ntop is increased from 1 to 4, while the refractive index nbottom keeps at 1.49.

[1]
Pagès S, Lagugné-Labarthet F, Buffeteau T, Sourisseau C 2002 Appl. Phys. B 75 541 DOI: 10.1007/s00340-002-0976-7
[2]
Wang L, Huang X, Li M, Dong J 2019 Opt. Express 27 25983 DOI: 10.1364/OE.27.025983
[3]
Turner M D, Saba M, Zhang Q, Cumming B P, Schräder-Turk G E, Gu M 2013 Nat. Photon. 7 801 DOI: 10.1038/nphoton.2013.233
[4]
Eidelshtein G, Fardian-Melamed N, Gutkin V, Basmanov D, Kotlyar A 2016 Adv. Mater. 28 4944 DOI: 10.1002/adma.v28.24
[5]
Liu Y, Zhao X 2018 Chin. Phys. B 27 117805 DOI: 10.1088/1674-1056/27/11/117805
[6]
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 1513 DOI: 10.1126/science.1177031
[7]
Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Svirko Y 2005 Phys. Rev. Lett. 95 227401 DOI: 10.1103/PhysRevLett.95.227401
[8]
Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2010 Nano Lett. 10 2075 DOI: 10.1021/nl100340w
[9]
Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026 DOI: 10.1103/PhysRevX.4.021026
[10]
Wang J, Tian H, Li S, Li L, Wang G, Gao J, Guo W, Zhou Z 2020 Opt. Lett. 45 1276 DOI: 10.1364/OL.388722
[11]
Lee S J, Lin W 2002 J. Am. Chem. Soc. 124 4554 DOI: 10.1021/ja0256257
[12]
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442 DOI: 10.1038/nmat2162
[13]
Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X 2009 Phys. Rev. Let. 102 023901 DOI: 10.1103/PhysRevLett.102.023901
[14]
Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C F 2007 Nat. Mater. 6 946 DOI: 10.1038/nmat2033
[15]
Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M, Zheludev N I 2009 Phys. Rev. B 79 035407 DOI: 10.1103/PhysRevB.79.035407
[16]
Zhao R, Zhou J, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 103 103602 DOI: 10.1103/PhysRevLett.103.103602
[17]
Zhao R, Koschny T, Economou E N, Soukoulis C M 2010 Phys. Rev. B 81 235126 DOI: 10.1103/PhysRevB.81.235126
[18]
Cao T, Wei C, Mao L, Li Y 2014 Sci. Rep. 4 7442 DOI: 10.1038/srep07442
[19]
Cheng Y Z, Chen F, Luo H 2020 Phys. Lett. A 384 126398 DOI: 10.1016/j.physleta.2020.126398
[20]
Tang M, Zhou X X, Luo H L, Wen S C 2012 Chin. Phys. B 21 124201 DOI: 10.1088/1674-1056/21/12/124201
[21]
Wang H, Zhang X 2011 Phys. Rev. A 83 053820 DOI: 10.1103/PhysRevA.83.053820
[22]
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Lett. 97 167401 DOI: 10.1103/PhysRevLett.97.167401
[23]
Cheng Y Z, Yang Y L, Zhou Y J, Zhang Z, Mao X S, Gong R Z 2016 J. Mod. Opt. 63 1675 DOI: 10.1080/09500340.2016.1167976
[24]
Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593 DOI: 10.1364/OL.35.001593
[25]
Cheng Y Z, Gong R Z, Wu L 2016 Plasmonics 12 1113 DOI: 10.1007/s11468-016-0365-4
[26]
Liu D Y, Luo X Y, Liu J J, Dong J F 2013 Chin. Phys. B 22 124202 DOI: 10.1088/1674-1056/22/12/124202
[27]
Kaschke J, Gansel J K, Wegener M M 2012 Opt. Express 20 26012 DOI: 10.1364/OE.20.026012
[28]
Cui Y, Kang L, Lan S, Rodrigues S, Cai W 2014 Nano Lett. 14 1021 DOI: 10.1021/nl404572u
[29]
Rehman M U, Hua C, Lu Y 2020 Chin. Phys. B 29 057304 DOI: 10.1088/1674-1056/ab81ff
[30]
Frank B, Yin X, SchäFerling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 Acs Nano 7 6321 DOI: 10.1021/nn402370x
[31]
Lesot P, Lafon O 2008 Chem. Phy. Lett. 458 219 DOI: 10.1016/j.cplett.2008.04.065
[32]
Heng H, Wang R 2016 Chin. Phys. Lett. 33 53 DOI: 10.1016/0009-2614(75)85451-0
[33]
Yang X, Li M, Hou Y D, Du J L, Gao F H 2019 Opt. Express 27 6801 DOI: 10.1364/OE.27.006801
[34]
Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811 DOI: 10.1103/PhysRevA.82.053811
[35]
Menzel C, Helgert C, Rockstuhl C, Kley E, Tunnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Lett. 104 253902 DOI: 10.1103/PhysRevLett.104.253902
[36]
Georgieva E 1995 J. Opt. Soc. Am. A 12 2203 DOI: 10.1364/JOSAA.12.002203
[37]
Cheng Q, Cui T J 2007 J. Opt. Soc. Am. A 23 3203 DOI: 10.1364/JOSAA.23.003203
[38]
Lu Y F, Han Y P 2019 Chin. Phys. B 28 024202 DOI: 10.1088/1674-1056/28/2/024202
[39]
Ghaffar A, Alkanhal Majeed A.S 2015 Int. J. Appl. Electrom. 47 805 DOI: 10.3233/JAE-130161
[40]
Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379 DOI: 10.1038/ncomms9379
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[6] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[7] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[8] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[9] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[10] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[11] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[12] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[13] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[14] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[15] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
No Suggested Reading articles found!