Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098102    DOI: 10.1088/1674-1056/abfb57
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array

Zhiyou Li(李治友)1,†, Yingting Yi(易颖婷)3,†, Danyang Xu(徐丹阳)4, Hua Yang(杨华)2, Zao Yi(易早)1,‡, Xifang Chen(陈喜芳)1, Yougen Yi(易有根)3, Jianguo Zhang(张建国)5, and Pinghui Wu(吴平辉)6,§
1 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
3 College of Physics and Electronics, Central South University, Changsha 410083, China;
4 College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
5 Department of Physics and Electronic Engineering, Jinzhong University, Jinzhong 030619, China;
6 Research Center for Photonic Technology, Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China
Abstract  We design a four-band terahertz metamaterial absorber that relied on the block Dirac semi-metal (BDS). It is composed of a Dirac material layer, a gold reflecting layer, and a photonic crystal slab (PCS) medium layer. This structure achieved perfect absorption of over 97% at 4.06 THz, 6.15 THz, and 8.16 THz. The high absorption can be explained by the localized surface plasmon resonance (LSPR). And this conclusion can be proved by the detailed design of the surface structure. Moreover, the resonant frequency of the device can be dynamically tuned by changing the Fermi energy of the BDS. Due to the advantages such as high absorption, adjustable resonance, and anti-interference of incident angle and polarization mode, the Dirac semi-metal perfect absorber (DSPA) has great potential value in fields such as biochemical sensing, information communication, and nondestructive detection.
Keywords:  metamaterials      terahertz      block Dirac semi-metal      localized surface plasmon resonance  
Received:  23 February 2021      Revised:  05 April 2021      Accepted manuscript online:  26 April 2021
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  87.50.up (Dosimetry/exposure assessment)  
  36.20.Kd (Electronic structure and spectra)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604311, 61705204, and 21506257), the Scientific Research Fund from Sichuan Provincial Science and Technology Department (Grant Nos. 2020YJ0137 and 2020YFG0467), the Undergraduate Innovation Fund by Southwest University of Science and Technology (Grant No. JZ20-027), the Fund by the School of Science of Southwest University of Science and Technology for the Innovation Fund Project (Grant No. LX2020010), and the Undergraduate Innovation and Entrepreneurship Training Program of Southwest University of Science and Technology (Grant No. S202010619073).
Corresponding Authors:  Zao Yi, Pinghui Wu     E-mail:  yizaomy@swust.edu.cn;wph1021@163.com

Cite this article: 

Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉) A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array 2021 Chin. Phys. B 30 098102

[1] Qi Y P, Zhang B H, Ding J H, Zhang T, Wang X X and Yi Z 2021 Chin. Phys. B 30 024211
[2] Zhang Y B, Yi Z, Wang X Y, Chu P X, Yao W T, Zhou Z G, Cheng S B, Liu Z M, Wu P H, Pan M and Yi YG 2021 Physica E 127 114526
[3] Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B and Pan M 2021 Diam. Relat. Mater. 111 108227
[4] Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H and Yi Z 2021 Chin. Phys. B 30 024207
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[6] Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H and Li H L 2020 Nanoscale 12 23077
[7] Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q and Yi Y G 2020 Mater. Today Energy 16 100390
[8] Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G and Wu P H 2020 Renew. Energy 158 227
[9] Zhao F, Chen X F, Yi Z, Qin F, Tang Y J, Yao W T, Zhou Z G and Yi Y G 2020 Solar Energy 204 635
[10] Hao J M, Wang J, Liu X L, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104
[11] Yao, G, Ling F R, Yue J, Luo C Y, Ji J and Yao J Q 2016 Opt. Express 24 1518
[12] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[13] Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S and Jile H 2020 IEEE Access 8 85154
[14] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi YG 2020 Sol. Energy Mater. Sol. Cells 211 110535
[15] Cen C L, Zhang Y B, Chen X F, Yang H, Yi Z, Yao W T, Tang Y J, Yi Y G, Wang J Q and Wu P H 2020 Physica E 117 113840
[16] Lin B Q, Guo J X, Huang B G, Fang L B, Chu P and Liu X W 2018 Chin. Phys. B 27 054204
[17] Khan M I and Tahir F A 2018 Chin. Phys. B 27 014101
[18] Hou H S, Wang G M, Li H P, Guo W L, Li T J and Cai T 2017 Chin. Phys. B 26 057701
[19] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[20] Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C and Li G F 2021 Physica E 131 114750
[21] Zhang J X, Zhang L D and Xu W 2012 J. Phys. D: Appl. Phys. 45 113001
[22] Wu Y F, Zhang L, Li C Z, Zhang Z S, Liu S, Liao Z M and Yu D P 2018 Adv. Mater. 30 1707547
[23] Chen Z H, Chen H, Jile H, Xu D Y, Yi Z, Lei Y L, Chen X F, Zhou Z G, Cai S S and Li G F 2021 Diam. Relat. Mater. 115 108374
[24] Chen H, Zhang H, Liu M, Zhao Y, Guo X and Zhang Y 2017 Opt. Mater. Express 7 3397
[25] Timusk T, Carbotte J P, Homes C C, Basov D N and Sharapov S G 2013 Phys. Rev. B 87 235121
[26] Chen H, Zhang H Y, Liu M D, Zhao Y K, Guo X H and Zhang Y P 2017 Opt. Mater. Express 7 3397
[27] Chu P X, Chen J X, Xiong Z G and Yi Z 2020 Opt. Commun. 476 126338
[28] Vasi B and Gaji R 2013 Appl. Phys. Lett. 103 261111
[29] Hossain M.B, Mehedi I M, Moznuzzaman M, Abdulrazak L F and Hossain M D 2019 Results Phys. 15 102719
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!