Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114209    DOI: 10.1088/1674-1056/abb661
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient and multifunctional terahertz polarization control device based on metamaterials

Xiao-Fei Jiao(焦晓飞)1,2,3, Zi-Heng Zhang(张子恒) 1,2,3, Yun Xu(徐云)1,2,3, and Guo-Feng Song(宋国峰)1,2,3, †
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
Abstract  

Terahertz polarization devices are an important part of terahertz optical systems. Traditional terahertz polarization devices rely on birefringent crystals, and their performances are limited by the material structures. In this work, we theoretically demonstrate that the metamaterial consisting of the medium and the periodic metal band embedded in the medium can control broadband polarization effectively. The transmission length of the subwavelength waveguide mode gives rise to a broadband transmission peak. The resonant cavity structure formed by the dielectric layer and the waveguide layer possesses a high transmission efficiency. By optimizing the metamaterial structure parameters, we design a high-efficient (>90%) quarter-wave plate over a frequency range of 0.90 THz–1.10 THz and a high-efficient (>90%) half-wave plate over a frequency range of 0.92 THz–1.02 THz. Besides, due to the anisotropy of the structure, the metamaterials with the same structural parameters can achieve the function of the polarized beam splitting with an efficiency of up to 99% over a frequency range of 0.10 THz–0.55 THz. Therefore, the designed metamaterial has a multifunctional polarization control effect, which has potential applications in the terahertz integrated polarization optical system.

Keywords:  terahertz      metamaterials      waveguide transmission  
Received:  17 July 2020      Revised:  14 August 2020      Accepted manuscript online:  09 September 2020
Fund: the National Key Research and Development Plan, China (Grant No. 2016YFB0402402), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43010000), the National Key Research and Development Project, China (Grant No. 2016YFB0400601), the National Basic Research Program of China (Grant No. 2015CB351902), the National Science and Technology Major Project, China (Grant No. 2018ZX01005101- 010), the National Natural Science Foundation of China (Grant Nos. 61835011and U1431231), the Key Research Projects of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the Beijing Science and Technology Projects (Grant No. Z151100001615042).
Corresponding Authors:  Corresponding author. E-mail: sgf@semi.ac.cn   

Cite this article: 

Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰) Efficient and multifunctional terahertz polarization control device based on metamaterials 2020 Chin. Phys. B 29 114209

Fig. 1.  

(a) Three-dimensional schematic diagram of metamaterial, and (b) cross-sectional view of structure in XZ plane.

Fig. 2.  

Metamaterial transmission spectrum under TE and TM polarization incidences.

Fig. 3.  

Electric field distribution in waveguide when TE is incident with waveguide length being 250 μm, metal strip 5 μm, medium width 175 μm, and incident wave frequency 0.85 THz.

Fig. 4.  

Plots of TE-polarized light transmittance versus frequency for different (a) medium widths and (b) waveguide transmission lengths.

Fig. 5.  

TM-polarized light frequency versus (a) medium widths and (b) waveguide transmission lengths.

Fig. 6.  

Plot of TM-polarized light transmittance versus frequency at different medium refractive indices.

Fig. 7.  

(a) Plot of linear transmissivity TM + TE and phase difference between electric field components TE and TM versus frequency for designed quarter-wave plat. (b) Plot of calculated ellipticity angle ζ and ellipticity χ versus frequency.

Fig. 8.  

(a) linear transmissivity TM + TE and phase difference between electric field components TM and TE versus frequency for designed half-wave plat. (b) Plot of calculated PRA and DoLP versus frequency.

Fig. 9.  

(a) Schematic diagram of polarization beam splitter. (b) Plot of transmittance and reflectance versus frequency for TE and TM incidences.

[1]
Zallat J, Collet C, Takakura Y 2004 Appl. Opt. 43 283 DOI: 10.1364/AO.43.000283
[2]
Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904 DOI: 10.1063/1.5091475
[3]
Zhang L, Yuan H W, Li X M 2018 Opt. Quantum Electron. 50 353 DOI: 10.1007/s11082-018-1616-8
[4]
Alam M Z, Bahrami F, Aitchison J S, Mojahedi M 2014 IEEE Photonics J. 6 3700110 DOI: 10.1109/JPHOT.2014.2331232
[5]
Patskovsky S, Meunier M, Kabashin A V 2008 Opt. Commun. 281 5492 DOI: 10.1016/j.optcom.2008.07.061
[6]
Yu H, Oh Y, Kim S, Song S H, Kim D 2012 Opt. Lett. 37 3867 DOI: 10.1364/OL.37.003867
[7]
Core M T 2006 J. Lightwave Technol. 24 305 DOI: 10.1109/JLT.2005.859828
[8]
de Faria G V, Ferreira J, Xavier G B, Temporao G P, von der Weid J P 2008 Electron. Lett. 44 228 DOI: 10.1049/el:20083122
[9]
Yang H P D, Hsu I C, Lai F I, Lin G, Kuo H C, Chi J Y 2007 Jpn. J. Appl. Phys., Part 2 46 L326 DOI: 10.1143/JJAP.46.L326
[10]
Carrasco E, Perruisseau-Carrier J 2013 IEEE Anten. Wirel. Propag. Lett. 12 253 DOI: 10.1109/LAWP.2013.2247557
[11]
Chang Z, You B, Wu L S, Tang M, Zhang Y P, Mao J F 2016 IEEE Anten. Wirel. Propag. Lett. 15 1537 DOI: 10.1109/LAWP.2016.2519545
[12]
Jia D, Xu J, Xin T, Zhang C, Yu X 2019 Appl. Phys. Lett. 114 101105 DOI: 10.1063/1.5088247
[13]
Xiao P, Tu X, Kang L, Jiang C, Zhai S, Jiang Z, Pan D, Chen J, Jia X, Wu P 2018 Sci. Rep. 8 8032 DOI: 10.1038/s41598-018-26204-y
[14]
Monnai Y, Altmann K, Jansen C, Hillmer H, Koch M, Shinoda H 2013 Opt. Express 21 2347 DOI: 10.1364/OE.21.002347
[15]
Xing Q R, Li S X, Zhang W L, Lang L Y, Mao F L, Xu S X, Chai L, Wang Q Y 2005 Chin. Phys. Lett. 22 1821 DOI: 10.1088/0256-307X/22/7/072
[16]
Zhou S F, Reekie L, Chan H P, Chow Y T, Chung P S, Luk K M 2012 Opt. Express 20 9564 DOI: 10.1364/OE.20.009564
[17]
Dubey A, Jain A, Jayalakshmi C G, Shami T C, Awari N, Prabhu S S 2013 Microw. Opt. Technol. Lett. 55 393 DOI: 10.1002/mop.27295
[18]
Stepanov A G, Rogov A, Bonacina L, Wolf J P, Hauri C P 2014 Opt. Express 22 21618 DOI: 10.1364/OE.22.021618
[19]
Liu J, Liang H, Zhang M, Su H 2015 Opt. Commun. 339 222 DOI: 10.1016/j.optcom.2014.11.046
[20]
Nagai M, Mukai N, Minowa Y, Ashida M, Suzuki T, Takayanagi J, Ohtake H 2015 Opt. Express 23 4641 DOI: 10.1364/OE.23.004641
[21]
Nagai M, Mukai N, Minowa Y, Ashida M, Takayanagi J, Ohtake H 2014 Opt. Lett. 39 146 DOI: 10.1364/OL.39.000146
[22]
Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305 DOI: 10.1016/j.carbon.2017.04.037
[23]
Shah N A, Ahmad F, Syed A A, Naqvi Q A 2013 Int. J. Appl. Electromagn. Mech. 43 379 DOI: 10.3233/JAE-131724
[24]
Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W, Zheludev N I 2009 Phys. Rev. B 80 153104 DOI: 10.1103/PhysRevB.80.153104
[25]
Xu W Z, Shi Y T, Ye J, Ren F F, Shadrivov I V, Lu H, Liang L, Hu X, Jin B, Zhang R, Zheng Y, Tan H H, Jagadish C 2017 Adv. Opt. Mater. 5 1700108 DOI: 10.1002/adom.201700108
[26]
Li T F, Li Y L, Zhang Z Y, Yang Q H, Fan F, Wen Q Y, Chang S J 2020 Appl. Phys. Lett. 116 251102 DOI: 10.1063/5.0009704
[27]
Li Y L, Li T F, Wen Q Y, Fan F, Yang Q H, Chang S J 2020 Opt. Express 28 21062 DOI: 10.1364/OE.395668
[28]
Fan K, Strikwerda A C, Zhang X, Averitt R D 2013 Phys. Rev. B 87 161104 DOI: 10.1103/PhysRevB.87.161104
[29]
Fang B, Cai Z, Peng Y, Li C, Hong Z, Jing X 2019 J. Electromagn. Waves Appl. 33 1375 DOI: 10.1080/09205071.2019.1608868
[30]
Yang X, Zhang B, Shen J 2018 Opt. Quantum Electron. 50 315 DOI: 10.1007/s11082-018-1571-4
[31]
Juretschke H J 1999 Am. J. Phys. 67 929 DOI: 10.1119/1.19153
[32]
Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493 DOI: 10.1364/AO.24.004493
[33]
Islam M S, Cordeiro C M B, Nine M J, Sultana J, Cruz A L S, Dinovitser A, Ng B W H, Ebendorff-Heidepriem H, Losic D, Abbott D 2020 IEEE Access 8 97204 DOI: 10.1109/Access.6287639
[34]
Zhao Y, Alu A 2011 Phys. Rev. B 84 205428 DOI: 10.1103/PhysRevB.84.205428
[35]
Li T, Hu X, Chen H, Zhao C, Xu Y, Wei X, Song G 2017 Opt. Express 25 23597 DOI: 10.1364/OE.25.023597
[36]
Ding F, Wang Z, He S, Shalaev V M, Kildishev A V 2015 ACS Nano 9 4111 DOI: 10.1021/acsnano.5b00218
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
No Suggested Reading articles found!