Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087804    DOI: 10.1088/1674-1056/28/8/087804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach

Meng Wang(王梦)1, Shiyao Huang(黄诗瑶)2, Run Hu(胡润)2, Xiaobing Luo(罗小兵)1,2
1 China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In this work, we designed the elliptical thermal cloak based on the transformation thermotics. The local entropy generation rate distribution and entransy dissipation rate distribution were obtained, and the total entropy generation and entransy dissipation of different types of elliptical cloaks were evaluated. We used entropy generation approach and entransy dissipation approach to evaluate the performance of the thermal cloak, and heat dissipation analysis was carried out for models with different parameters. Finally, the optimized elliptical thermal cloak with minimum entropy generation and minimum entransy dissipation is found, and some suggestions on optimizing the structure of elliptical thermal cloak were given.
Keywords:  metamaterials      thermal conductivity      entropy  
Received:  10 May 2019      Revised:  11 June 2019      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  65.40.G- (Other thermodynamical quantities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51606074 and 51625601) and the Fund from the Ministry of Science and Technology of China (Grant No. 2017YFE0100600).
Corresponding Authors:  Run Hu     E-mail:  hurun@hust.edu.cn

Cite this article: 

Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵) Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach 2019 Chin. Phys. B 28 087804

[1] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[2] Hu R, Xie B, Hu J Y, Chen Q and Luo X B 2015 Europhysics. Lett. 111 54003
[3] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[4] He X and Wu L Z 2013 Appl. Phys. Lett. 102 211912
[5] Ma Y, Lan L, Jiang W, Sun F and He S L 2013 NPG Asia Mater. 5 e73
[6] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 28
[7] Liu Y D, Cheng Y H, Hu R and Luo X B 2019 Phys. Lett. A. 383 2296
[8] Kapadia R S and Bandaru P R 2014 Appl. Phys. Lett. 105 233903
[9] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[10] Hu R, Wei X L, Hu J Y and Luo X B 2015 Sci. Rep. 4 3600
[11] Guenneau S and Amra C 2013 Opt. Express 21 6578
[12] Liu Y, Sun F and He S 2016 Opt. Express 24 5683
[13] Li Y, Shen X, Wu Z and Huang J P 2015 Phys. Rev. Lett. 115 195503
[14] Hu R, Zhou S L, Li Y, Lei D Y and Luo X B 2018 Adv. Mater. 30 1707237
[15] Shen X Y and Huang J P 2014 Int. J. Heat. Mass. Transfer 78 1
[16] Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403
[17] Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[18] Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S and Kocabas C 2018 Nano. Lett. 18 4541
[19] Jiang W X, Cui T J, Yu G X, Lin X Q, Cheng Q and Chin J Y 2008 J. Phys. D: Appl. Phys. 41 085504
[20] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[21] Bejan A 1979 J. Heat. Transfer 101 718
[22] Bejan A 1997 Int. J. Heat. Mass. Transfer 40 799
[23] Fang M F and Wang Y Y 2018 Chin. Phys. B 27 114207
[24] Cheng X T and Liang X G 2013 Int. J. Heat. Mass. Transfer 64 903
[25] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat. Mass. Transfer 50 2545
[26] Chen Q, Zhu H, Pan N and Guo Z Y 2011 Proc. R. Soc. A 467 1012
[27] Xu G X, Zhang H C, Zou Q and Jin Y 2017 Int. J. Heat. Mass. Transfer 109 746
[28] Zhang H C, Xu G Q, Yu H Y and Wei Y Q 2017 J. Heat. Transfer 139 054501
[29] Yang T, Huang L, Chen F and Xu W 2013 J. Phys. D: Appl. Phys. 46 305102
[30] Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
[31] Chen L, Wei S and Sun F 2009 Appl. Phys. 105 094906
[32] Xu G X, Zhang H C, Zhang X and Jin Y 2017 Entropy 19 538
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[5] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[6] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[10] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[13] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[14] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[15] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
No Suggested Reading articles found!