Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 033102    DOI: 10.1088/1674-1056/26/3/033102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations

M A Ali1, M R Khatun2, N Jahan1, M M Hossain1
1 Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh;
2 Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
Abstract  The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density functional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. The electronic density of states (DOS) is calculated and analyzed. The metallic behavior for the compound is confirmed and the value of DOS at Fermi level is 4.2 states per unit cell per eV. Technologically important optical parameters (e.g., dielectric function, refractive index, absorption coefficient, photo conductivity, reflectivity, and loss function) are calculated for the first time. The study of dielectric constant (ε1) indicates the Drude-like behavior. The absorption and conductivity spectra suggest that the compound is metallic. The reflectance spectrum shows that this compound has the potential to be used as a solar reflector. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient of Mo2Ga2C MAX phase are derived from the quasi-harmonic Debye model with phononic effect also for the first time. Analysis of Tc expression using available parameter values (DOS, Debye temperature, atomic mass, etc.) suggests that the compound is less likely to be superconductor.
Keywords:  first-principles calculations      density of states (DOS)      optical properties      thermodynamic properties  
Received:  25 September 2016      Revised:  21 December 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  M A Ali     E-mail:  ashrafphy31@cuet.ac.bd

Cite this article: 

M A Ali, M R Khatun, N Jahan, M M Hossain Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations 2017 Chin. Phys. B 26 033102

[1] Nowotny H 1970 Prog. Solid State Chem. 2 (ed. H Reiss) (New York, NY, USA: Pergamon Press)
[2] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[3] Finkel P, Barsoum M W and El-Raghy T 2000 J. Appl. Phys. 87 1701
[4] Wang J and Zhou Y 2009 Annu. Rev. Mater. Res. 39 415
[5] Bouhemadou A, Khenata R, Kharoubi M and Medkour Y 2008 Solid State Commu. 146 175
[6] Nasir M T, Hadi M A, Naqib S H, Parvin F, Islam A K M A, Roknuzzaman M and Ali M S 2014 J. Mod. Phys. B 28 1550022
[7] Lapauw T, Lambrinou K, Cabioćh T, Halim J, Lu J, Pesach A, Rivin O, Ozeri O, Caspi E N, Hultman L, Eklund P, Rosén J, Barsoum M W and Vleugels J 2016 J. Eur. Ceram. Soc. 36 1847
[8] Horlait D, Grasso S, Chroneos A and Lee W E 2016 Mater. Res. Lett. 04 137
[9] Horlait D, Middleburgh S C, Chroneos A and Lee W E 2016 Sci. Rep. 6 18829
[10] Ali M A, Nasir M T, Khatun M R, Islam A K M A and Naqib S H 2016 Chin. Phys. B 25 103102
[11] Ali M A, Hossain M M, Jahan N, Naqib S H and Islam A K M A https://arxiv.org/ftp/arxiv/papers/1604/1604.06317.pdf
[12] Toth L E 1967 J. Less Common Metals 13 129
[13] Hu C, Lai C C, Tao Q, Lu J, Halim J, Sun, Zhang J, Yang J, Anason B, Wang J, Sakka Y, Hultman L, Eklund P, Rosen J and Barsoum M W 2015 Chem. Commun. 51 6553
[14] Lai C C, Meshkian R, Dahlqvist M, Lu J, Näslund L Å, Rivin O, Caspi E N, Ozeri O, Hultman L, Eklund P, Barsoum M W and Rosen J 2015 Acta Mater. 99 157
[15] Hadi M A 2016 Comp. Mater. Sci. 117 422
[16] Wang H C, Wang J N, Shi X F, Wang Y P and Tang B Y 2016 J. Mater. Sci. 51 8452
[17] Du Y L, Sun Z M, Hashimoto H and Tian W B 2009 Matr. Trans. 50 2173
[18] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717
[19] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 65 1045
[20] Perdew J P and Ernzerof K 1996 Phys. Rev. Lett. 77 3865
[21] Monkhorst H J and Pack J 1976 Phys. Rev. 13 5188
[22] Fischer T H, Almlöf J 1992 J. Phys. Chem. 96 9768
[23] Ali M A, Islam A K M A and Ali M S 2012 J. Sci. Res. 4 1
[24] McMillan W L 1968 Phys. Rev. 167 331
[25] Ali M A, Jahan N and Islam A K M A 2014 J. Sci. Res. 6 407
[26] Hadi M A, Ali M S, Naqib S H and Islam A K M A 2013 Int. J. Comp. Mat. Sci. Eng. 02 1350007
[27] Li S, Ahuja R, Barsoum M W, Jena P and Johansson B 2008 Appl. Phys. Lett. 92 221907
[28] Blanco M A, Francisco E, and Luana V 2004 Comput. Phys. Commun. 158 57
[29] Francisco E, Blanco M A and Sanjurjo G 2001 Phys. Rev. B 63 049107
[30] Du Y L, Sun Z M, Hashimoto H and Tian W B 2009 Matr. Trans. 50 2173
[31] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 65 1045
[32] Rayhan M A, Ali M A, Naqib S H and Islam A K M A 2015 J. Sci. Res. 7 53
[33] Debye P 1912 Ann. Phys. 39 789
[34] Petit A T and Dulong P L 1981 Ann. Chem. Phys. 10 395
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!