Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 026101    DOI: 10.1088/1674-1056/ac11e2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3

Tian-Hui Dong(董天慧)1, Xu-Dong Zhang(张旭东)1,†, Lin-Mei Yang(杨林梅)1, and Feng Wang(王峰)2
1 School of Science, Shenyang University of Technology, Shenyang 110870, China;
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract  In recent years, transition metal silicides have become the potential high temperature materials. The ternary silicide has attracted the attention of scientists and researchers. But their inherent brittle behaviors hinder their wide applications. In this work, we use the first-principles method to design four vacancy defects and discuss the effects of vacancy defects on the structural stability, mechanical properties, electronic and thermodynamic properties of hexagonal Cr5BSi3 silicide. The data of lattice vibration and thermodynamic parameters indicate that the Cr5BSi3 with different atomic vacancies can possess the structural stabilities. The different atomic vacancies change the mechanical properties and induce the Cr5BSi3 to implement the brittle-to-ductile transition. The shear deformation resistance and volume deformation resistance of Cr5BSi3 are weakened by different vacancy defects. But the brittleness behavior is remarkably improved. The structural stability and brittle-to-ductile transition of Cr5BSi3 with different vacancies are explored by the electronic structures. Moreover, the thermal parameters indicate that the Cr5BSi3 with vacancies exhibit different thermodynamic properties with temperature rising.
Keywords:  vacancies in Cr5BSi3      brittle-to-ductile transition      electronic properties      thermodynamic properties  
Received:  13 May 2021      Revised:  30 June 2021      Accepted manuscript online:  07 July 2021
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  61.72.Bb (Theories and models of crystal defects)  
  61.72.jd (Vacancies)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2019JH/30100019).
Corresponding Authors:  Xu-Dong Zhang     E-mail:  zxdwfc@163.com

Cite this article: 

Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰) Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3 2022 Chin. Phys. B 31 026101

[1] Opela M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887
[2] Wie D M, Drewry D G, King D E and Hudson C M 2004 J. Mater. Sci. 39 5915
[3] Corral E L and Loehman R E 2008 J. Am. Ceram. Soc. 91 1495
[4] Blum Y D, Marschall J, Hui D and Young S 2008 J. Am. Ceram. Soc. 91 1453
[5] Roger J, Babizhetskyy V, Cordier S, Bauer J, Hiebl K, Le Polles L, Ashbrook S E, Halet J F and Guerin R 2005 J. Solid State Chem. 178 1851
[6] Tao X, Jund P, Colinet C and Tedenac J C 2009 Phys. Rev. B 80 104103
[7] Shugani M, Aynyas M and Sanyal S P 2015 Indian J. Pure Appl. Phys. 51 104
[8] Aydin S, Tatar A and Ciftci Y O 2016 Solid State Sci. 53 44
[9] Pan Y and Guan W M 2017 Phys. Chem. Chem. Phys. 19 19427
[10] Pan Y and Guan W M 2019 Ceram. Int. 45 15649
[11] Wang D Z, Hu Q W and Zeng X Y 2014 J. Alloys Compd. 588 502
[12] Cai G M, Zheng F, Yi D Q, Chen H M, Zhou S X, Long Z H and Jin Z P 2010 J. Alloys Compd. 494 148
[13] Müller C, Hasemann G, Regenberg M, Betke U and Krüger M 2020 Materials 13 2100
[14] Pan Y, Guan W M and Li Y Q 2018 Phys. Chem. Chem. Phys. 20 15863
[15] Nowotny H, Piegger E, Kieffer R and Benesovsky F 1958 Monatsh. Chem. 89 611 (in German)
[16] Zhou Y C, Xiang H M, Dai F Z and Feng Z 2018 J. Mater. Sci. Technol. 34 1441
[17] Pan Y 2019 J. Electron. Mater. 48 5154
[18] Chen J Y, Zhang X D, Li D Z, Liu C, Ma H, Ying C H and Wang F 2020 Ceram. Int. 46 4595
[19] Sun L, Wang W, Liu C, Lv D, Gao Z Y and Xu B H 2021 Superlattices Microstruct. 149 106775
[20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Math. 14 2717
[21] Vanderbilt D 1990 Phys. Rev. B 41 7892
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 758
[23] Prfrommer B G, Côté M, Loiue S G and Cohen M L 1997 J. Comput. Phys. 131 233
[24] Wang P, Zhang N C and Jiang C 2020 Chin. Phys. B 29 076201
[25] Noor N A, Mushahid N and Khan A 2020 Chin. Phys. B 29 097101
[26] Wen M, Xie X and Dong H 2020 Chin. Phys. B 29 078103
[27] Rieger W and Parthé E 1968 Acta Crystallogr. Sect. B:Struct. Sci. 24 456
[28] Chen J Y, Zhang X D, Ying C H, Ma H, Wang F and Guo H 2020 Ceram. Int. 46 10992
[29] Wang W, Sun L, Li Q, Lv D, Gao Z Y and Huang T 2021 J. Magn. Magn. Mater. 527 167692
[30] Zhu X Y, Gao X, Song H, Han G and Lin D 2017 Mater. Des. 119 30
[31] Pan Y, Zhang J, Jin C and Chen X 2016 Mater. Des. 108 13
[32] Pan Y, Chen S and Lin Y 2017 Int. J. Mod. Phys. B 31 1750096
[33] Yao J, Lin Y, Lin N and Le S 2012 Physica B 407 3888
[34] Feng L, Su J and Liu Z 2014 J. Alloys Compd. 613 122
[35] Freysoldt C, Grabowski B, Hickel T and Neugebauer 2014 J Rev. Mod. Phys. 86 253
[36] Khyzhun O Y, Bekenev V L, Denysyuk N M, Isaenko L I, Yelisseyev A P, Goloshumova A A and Tarasova A Y 2019 J. Electron. Mater. 48 3059
[37] Pu D L and Pan Y 2021 Ceram. Int. 47 2311
[38] Wang W X, Jiang Z Y and Lin Y M 2020 Chin. Phys. B 29 076101
[39] Chen J Y, Zhang X D, Yang L M and Wang F 2021 Commun. Theor. Phys. 73 045702
[40] Wu Y, Bao L, Wang X, Wang Y, Peng M and Duan Y 2020 Mater. Today Commun. 25 101410
[41] Hermet P, Khalil M, Viennois R, Beaudhuin M, Bourgogne D and Ravot D 2015 RSC Adv. 5 19106
[42] He C, Zhang M, Li T T and Zhang W X 2020 J. Mater. Chem. C 8 6542
[43] Zhou Z, Zhou X and Zhang K 2016 Comput. Mater. Sci. 113 98
[44] He C, Zhang M, Li T T and Zhang W X 2020 Appl. Surf. Sci. 505 144619
[45] Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
[46] Wang Y, Wu Y, Wang X, Duan Y and Peng M 2021 J. Phy. Chem. Solids 151 109925
[47] Hill R 1952 Proc. Phys. Soc. 65 349
[48] Wang X, Bao L, Wang Y, Wu Y, Duan Y and Peng M 2021 Mater. Today Commun. 26 101723
[49] He C, Zhang M, Li T T and Zhang W X 2020 J. Mater. Chem. C 8 6542
[50] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[51] Wu Y, Wang X, Wang Y, Duan Y and Peng M 2021 Opt. Mater. 114 110963
[52] Grimvall G 1999 Thermo Physical Properties of Materials (Amsterdam:North Holland)
[53] Pugh S F 1954 Philos. Mag. 45 823
[54] Lewandowski J J, Wang W H and Greer A L 2005 Philos. Mag. Lett. 85 77
[55] Li T T, He C and Zhang W X 2021 J. Energy Chem. 52 121
[56] Li T T, He C and Zhang W X 2020 Energy Storage Mater. 25 866
[57] He C, Zhang M and Zhang W X 2019 Solid State Commun. 303 113736
[58] Kittel C 1996 Introduction to Solid State Physics (New York:Wiley)
[59] Duan Y, Wang Y, Peng M and Wang K 2021 Mater. Today Commun. 26 101991
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[7] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[8] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[9] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[12] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[13] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[14] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[15] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
No Suggested Reading articles found!