Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 117501    DOI: 10.1088/1674-1056/26/11/117501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observation of giant magnetocaloric effect under low magnetic fields in EuTi1-xCoxO3

Qi-Lei Sun(孙启磊)1, Zhao-Jun Mo(莫兆军)2, Jun Shen(沈俊)3, Yu-Jin Li(黎玉进)1, Lan Li(李兰)2, Jun-Kai Zhang(张君凯)2, Guo-Dong Liu(刘国栋)1, Cheng-Chun Tang(唐成春)1, Fan-Bin Meng(孟凡斌)1
1. School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
2. Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education of Ministry of Education, Key Laboratory for Optoelectronic Materials and Devices of Tianjin, Institute of Material Physics, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300191, China;
3. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The magnetic properties and magnetocaloric effect (MCE) in EuTi1-xCoxO3 (x=0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti4+ ions were substituted by Co2+ ions, the delicate balance was changed between antiferromagnetic (AFM) and ferromagnetic (FM) phases in the EuTiO3 compound. In EuTi1-xCoxO3 system, a giant reversible MCE and large refrigerant capacity (RC) were observed without hysteresis. The values of-△ SMmax were evaluated to be around 10 J·kg-1·K-1 for EuTi0.95Co0.05O3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi1-xCoxO3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.
Keywords:  magnetocaloric effect      magnetic entropy change      magnetic phase transformation  
Received:  02 May 2017      Revised:  31 July 2017      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  65.40.gd (Entropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504266, 51271192, 51322605, and 51371075) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCQNJC02300).
Corresponding Authors:  Fan-Bin Meng     E-mail:  fanbinmeng@126.com

Cite this article: 

Qi-Lei Sun(孙启磊), Zhao-Jun Mo(莫兆军), Jun Shen(沈俊), Yu-Jin Li(黎玉进), Lan Li(李兰), Jun-Kai Zhang(张君凯), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌) Observation of giant magnetocaloric effect under low magnetic fields in EuTi1-xCoxO3 2017 Chin. Phys. B 26 117501

[1] Pecharsky V K, Gschneidner K A and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
[3] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[4] Tegus O, Bao L H and Song L 2013 Chin Phys. B 22 037506
[5] Hu F X, Shen B G, Sun J R and Zhang X 2000 Chin. Phys. 9 550
[6] Hu F X, Shen B G and Sun J R 2000 Appl. Phys. Lett. 76 3460
[7] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A and Yayama H 1987 J. Appl. Phys. 62 3873
[8] Khan M, Gschneidner K A and Pecharsky V K 2010 J. Appl. Phys. 107 09A904
[9] Hashimoto T, Kurihara T, Matsumoto K, Sahashi M, Inomata K and Tomokiyo A 1987 J. Appl. Phys. 26 1673
[10] Campoy J C P, Plaza E J R, Coelho A A and Gama S 2006 Phys. Rev. B 74 134410
[11] Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
[12] Singh N K, Suresh K G, Nirmala R, Nigam A K and Malik S K 2006 J. Magn. Magn. Mater. 302 302
[13] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[14] Rushchanskii K Z, Kamba S, Goian V, Vanek P, Savinov M and Prokleska J 2010 Nature Mater. 9 649
[15] Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K and Tanaka I 2011 Phys. Rev. B 83 214421
[16] Wei T, Song Q G, Zhou Q J, Li Z P, Qi X L and Liu W P 2011 Appl. Surf. Sci. 258 599
[17] Kańtil J, Javorský P and Andreev A V 2009 J. Magn. Magn. Mater. 321 2318
[18] Lee J H, Fang L, Vlahos E, et al. 2010 Nature 466 954
[19] Rubi K, Kumar P, Repaka D V M, Chen R, Wang J S and Mahendiran R 2014 Appl. Phys. Lett. 104 032407
[20] Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Feng X H, Ji R S and Shen B G 2017 J. Alloys Compd. 694 235
[21] Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y and Shen J 2016 Ceram. Int.
[22] Roy S, Khan N and Mandal P 2016 Apl. Materials. 4 1479
[23] Yang H, Wang H Y and Yoon J 2009 Adv. Mater. 21 3794
[24] Takahashi K S, Onoda M, Kawasaki M, Nagaosa N and Tokura Y 2009 Phys. Rev. Lett. 103 057204
[25] Shvartsman V V, Borisov P, Kleemann W, Kamba S and Katsufuji T 2010 Phys. Rev. B 81 064426
[26] Banerjee S K 1964 Phys. Lett. 12 16
[27] Gschneidner K A, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum. 315 69
[28] Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Tang C C and Shen B G 2013 Appl. Phys. Lett. 102 192407
[29] Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and Namiki T 2012 Appl. Phys. Lett. 100 152403
[30] Gupta S and Suresh K G 2013 Mater. Lett. 113 195
[31] Kolodiazhnyi T, Valant M, Williams J R, Bugnet M, Botton G A, Ohashi N and Sakka Y 2012 J. Appl. Phys. 112 083719
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!