ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes |
Ming-Can Qian(钱明灿)1, Shu-Fang Zhang(张淑芳)2, Hai-Jun Luo(罗海军)1,3, Xing-Ming Long(龙兴明)3, Fang Wu(吴芳)1, Liang Fang(方亮)1, Da-Peng Wei(魏大鹏)4, Fan-Ming Meng(孟凡明)1, Bao-Shan Hu(胡宝山)5 |
1. State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing 400044, China; 2. College of Software, Chongqing College of Electronic Engineering, Chongqing 401331, China; 3. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China; 4. Chongqing Engineering Research Center of Graphene Film Manufacturing, Chongqing 401331, China; 5. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China |
|
|
Abstract In order to decrease the Schottky barrier height and sheet resistance between graphene (Gr) and the p-GaN layers in GaN-based light-emitting diodes (LEDs), some transparent thin films with good conductivity and large work function are essential to insert into Gr and p-GaN layers. In this work, the ultra-thin films of four metals (silver (Ag), golden (Au), nickel (Ni), platinum (Pt)) are explored to introduce as a bridge layer into Gr and p-GaN, respectively. The effect of a different combination of Gr/metal transparent conductive layers (TCLs) on the electrical, optical, and thermal characteristics of LED was investigated by the finite element methods. It is found that both the TCLs transmittance and the surface temperature of the LED chip reduces with the increase of the metal thickness, and the transmittance decreases to about 80% with the metal thickness increasing to 2 nm. The surface temperature distribution, operation voltage, and optical output power of the LED chips with different metal/Gr combination were calculated and analyzed. Based on the electrical, optical, and thermal performance of LEDs, it is found that 1.5-nm Ag or Ni or Pt, but 1-nm Au combined with 3 layered (L) Gr is the optimal Gr/metal hybrid transparent and current spreading electrode for ultra-violet (UV) or near-UV LEDs.
|
Received: 19 February 2017
Revised: 06 April 2017
Accepted manuscript online:
|
PACS:
|
44.05.+e
|
(Analytical and numerical techniques)
|
|
44.90.+c
|
(Other topics in heat transfer)
|
|
Fund: Project supported by the National High-Technology Research and Development Program of China (Grant No. 2015AA034801), the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University (Grant Nos. SKLMT-ZZKT-2017M15, SKLM-ZZKT-2015Z16, and SKLMT-KFKT-201419), the National Natural Science Foundation of China (Grant Nos. 11374359, 11304405, and 11544010), the Natural Science Foundation of Chongqing (Grant Nos. cstc2015jcyjA50035 and cstc2015jcyjA1660), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112017CDJQJ328839, 106112014CDJZR14300050, 106112016CDJZR288805, and 106112015CDJXY300002), and the Sharing Fund of Large-scale Equipment of Chongqing University (Grant Nos. 201606150016, 201606150017, and 201606150056). |
Corresponding Authors:
Shu-Fang Zhang, Hai-Jun Luo, Liang Fang
E-mail: roseymcn2000@foxmail.com;lhj19830330@126.com;lfang@cqu.edu.cn
|
Cite this article:
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山) Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes 2017 Chin. Phys. B 26 104402
|
[1] |
Zhang Y, Li X, Wang L, et al. 2012 Nanoscale 4 5852
|
[2] |
Krames M R, Shchekin O B, Mueller-Mach R, et al. 2007 J. Disp. Technol. 3 160
|
[3] |
Schubert, Fred E and Kim J K 2005 Science 308 1274
|
[4] |
Li Z W, Hu Y H, Li Y, et al. 2017 Chin. Phys. B 26 036802
|
[5] |
Wang X, Zhi L and Müllen K 2008 Nano Lett. 8 323
|
[6] |
Ahmad A, Asghar S and Alsaedi A 2014 Chin. Phys. B 23 074401
|
[7] |
Seo T H, Kim B K, Shin G U, et al. 2013 Appl. Phys. Lett. 103 051105
|
[8] |
Pang S, Hernandez Y, Feng X, et al. 2011 Adv. Mater. 23 2779
|
[9] |
Momeni D and Myrzakulov R 2015 Chin. Phys. Lett. 32 047401
|
[10] |
Li X S, Zhu Y W, Cai W W, et al. 2009 Nano Lett. 9 4359
|
[11] |
Chandramohan1 S, Kang J H, Katharria1 Y S, et al. 2012 Appl. Phys. Lett. 100 023502
|
[12] |
Lee J M, Jeong H, Choi Y K J, et al. 2011 Appl. Phys. Lett. 99 041115
|
[13] |
Seo T H, Chae S J, Kim B K, et al. 2012 Appl. Phys. Express 5 115101
|
[14] |
Lin Y C, Chang S J, Su Y K, et al. 2002 IEEE Photon. Tech. Lett. 14 1668
|
[15] |
Niu C Y, Qi H, Huang X, et al. 2015 Chin. Phys. B. 24 114401
|
[16] |
Kim B J, Yang G, Kim H Y, et al. 2013 Opt. Express 21 29025
|
[17] |
Seo T H, Shin G U, Kim B K, et al. 2013 J. Appl. Phys. 114 223105
|
[18] |
Wang L, Zhang Z H and Wang N 2015 IEEE J. Quantum Electron. 51 1
|
[19] |
Ryu J H, Choi D H and Kim S J 2002 Int. J. Heat Mass Transfer 45 2823
|
[20] |
Han J Q and Liu Q S 2013 Chin. Phys. Lett. 30 054301
|
[21] |
Sheu G J, Hwu F S, Chen J C, et al. 2008 J. Electrochem. Soc. 155 H836
|
[22] |
Hwu F S, Chen J C, Tu S H, et al. 2010 J. Electrochem. Soc. 157 H31
|
[23] |
Xue S J, Fang L, Long X M, et al. 2014 Chin. Phys. Lett. 31 028501
|
[24] |
Nirmalraj P N, Lutz T, Kumar S, et al. 2010 Nano Lett. 11 16
|
[25] |
Chen H, Kou X, Yang Z, et al. 2008 Langmuir. 24 5233
|
[26] |
McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057
|
[27] |
Yakuphanoglu F, Durmusş M, Okutan M, et al. 2006 Physica B 373 262
|
[28] |
Xu H Y and Jiang X Y 2015 Chin. Phys. B 24 034401
|
[29] |
Kim J S, Yang S C and Bae B S 2010 Chem. Mater. 22 3549
|
[30] |
Horng R H, Lin R C, Chiang Y C, et al. 2012 Microelectron. Reliab. 52 818
|
[31] |
Liu L B, Tao C, Liu X J, et al. 2015 Chin. Phys. B 24 024304
|
[32] |
Zhang G C, Feng S W, Zhou Z, et al. 2011 Chin. Phys. B 20 027202
|
[33] |
Yan Q X, Zhang S F, Long X M, et al. 2016 Chin. Phys. Lett. 33 078501
|
[34] |
Oh M, Jin W Y, Jeong H J, et al. 2015 Sci. Rep. 5 13483
|
[35] |
Liu Z Q, Wei T B, Guo E Q, et al. 2011 Appl. Phys. Lett. 99 091104
|
[36] |
Müller E, Gerthsen D, Brückner P, et al. 2006 Phys. Rev. B 73 245316
|
[37] |
Xu J, Schubert M F, Zhu D, et al. 2011 Appl. Phys. Lett. 99 041105
|
[38] |
Wu L J, Li S T, Liu C, et al. 2012 Chin. Phys. B 21 068506
|
[39] |
Ryou J H, Yoder P D, Liu J, et al. 2009 IEEE J. Sel. Top. Quantum Electron. 15 1080
|
[40] |
Laubsch A, Sabathil M, Baur J, et al. 2010 IEEE T. Electron. Dev. 57 79
|
[41] |
Meyaard D S, Shan Q, Cho J, et al. 2012 Appl. Phys. Lett. 100 081106
|
[42] |
Malyutenko V K, Bolgov S S and Podoltsev A D 2010 Appl. Phys. Lett. 97 251110
|
[43] |
Li X, Zhu Y, Cai W, et al. 2009 Nano Lett. 9 4359
|
[44] |
Yu H J, Dong Y, Kim T S, et al. 2015 J. Korean Phys. Soc. 67 346
|
[45] |
Park C H, Bonini N, Sohier T, et al. 2014 Nano Lett. 14 1113
|
[46] |
Hibbard D L, Jung S P, Wang C, et al. 2003 Appl. Phys. Lett. 83 311
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|