Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024201    DOI: 10.1088/1674-1056/ac6db7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency of broadband transmissive metasurface terahertz polarization converter

Qiangguo Zhou(周强国)1,4, Yang Li(李洋)1,4, Yongzhen Li(李永振)1,4, Niangjuan Yao(姚娘娟)1,4, and Zhiming Huang(黄志明)1,2,3,4,5,†
1 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
3 Institute of Optoelectronics, Fudan University, Shanghai 200438, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the focus due to its great influence on the characteristics. In this paper, a transmissive metasurface terahertz polarization converter is designed in 3D structure with an upper surface of ruler-like rectangular, an intermediate dielectric layer and a lower surface of metal grid wires. Numerical simulations of the converter show that the polarization conversion ratio (PCR) is above 99.9% at 0.288 THz-1.6 THz, the polarization rotation angle (PRA) is close to 90° at 0.06 THz-1.4 THz, and the ellipticity angle (EA) is close to 0° at 0.531 THz-1.49 THz. The origin of the efficient polarization conversion is explained by analyzing the electric field intensity, magnetic field intensity, surface current, electric field energy density, and magnetic field energy density distributions of the converter at 1.19 THz and 0.87 THz, which are consistent with the energy transmittance and transmittance coefficient. In addition, the effects of different thickness and material of intermediate layer, thickness of upper surface material, polarized wave incidence angle, and metasurface materials on the performance of the polarization converter are discussed, and how they affect the conversion performance of the polarization converter are also explained. Our results provide a strong theoretical basis and technical support to develop high performance transmission-type terahertz polarization converters, and play an important role to promote the development of terahertz science and technology.
Keywords:  terahertz      polarization converter      metasurface      transmittance  
Received:  08 March 2022      Revised:  19 April 2022      Accepted manuscript online:  07 May 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Fundation (Grant Nos. 12134016 and 61625505), Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC025), Sino– Russia International Joint Laboratory of Terahertz Materials and Devices (Grant No. 18590750500), and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).
Corresponding Authors:  Zhiming Huang     E-mail:  zmhuang@mail.sitp.ac.cn

Cite this article: 

Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明) High efficiency of broadband transmissive metasurface terahertz polarization converter 2023 Chin. Phys. B 32 024201

[1] Yang S L S, Kishk A A and Lee K F 2008 IEEE T. Antenn. Propag. 56 1780
[2] Falade O P, Rehman M U, Gao Y F, Chen X and Parini C G 2012 IEEE T. Antenn. Propag. 60 4479
[3] Lin W and Wong H 2015 IEEE T. Antenn. Propag. 63 5938
[4] Ryzhkov A V, Giangrande S E, Melnikov V M and Schuur T J 2004 J. Atmos. Ocean. Tech. 22 1138
[5] Zhou Q G, Huang Z M and Zhou W 2021 Infrared Technol. 43 817
[6] Maltsev A, Perahia E, Maslennikov R, Sevastyanov A and Khoryaev A 2010 IEEE Antenn. Wirel. PR. 9 413
[7] Brand G F 2002 Int. J. Infrared Millimeter Waves. 23 1271
[8] Zhu W, Rukhlenko I D, Si L M and Premaratne M 2013 Appl. Phys. Lett. 102 77
[9] Zhao Y, Belkin M A and Alú A 2012 Nat. Commun. 3 8701
[10] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[11] Pendry J B, Holden A J, Stewart W J and Youngs I I 2001 Phys. Rev. Lett. 87 4773
[12] Pendry J B, Holden A J and Robbins D 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[13] Veselago V G and Lebedev P N 1968 Phys. Usp. 10 509
[14] Ghevts G 2003 Phys. Rev. B 67 5109
[15] Parazzoli CG, Greegor RB, Li K, Koltenbah BEC and Tanielian M 2003 Phys. Rev. Lett. 90 7401
[16] Yin X, Ye Z, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[17] Mutlu M and Ozbay E 2012 Phys. Rev. Lett. 100 051909
[18] Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J and Averitt R D 2004 Nature 444 597
[19] Zhang M X 2014 Introduction to metamaterials (National Defense Industry Press)
[20] Ye Y and He S 2010 Appl. Phys. Lett. 96 788
[21] Song K, Zhao X P, Fu Q H, Liu Y H and Zhu W R 2012 J. Electromagnet Wave. 26 1967
[22] Lei W, Xiao-Wen L, Wei H, Guang-Hao S, Peng C, Lan-Ju L, Biao-Bing J, Pei-Heng W, Hao Q, Yi-Nong L, Xiao L, Zhi-Gang Z and Yan-Qing L 2015 Light-Sci. Appl. 4 e253
[23] Song K, Liu Y, Fu Q, Zhao X, Luo C and Zhu W 2013 Opt. Express 21 7439
[24] Song K, Zhao X, Liu Y, Fu Q and Luo C 2013 Appl. Phys. Lett. 103 101908
[25] Tretyakov S, Nefedov I, Sihvola A, Maslovski S and Simovski C 2003 J. Electromagnet. Wave. 17 695
[26] Xing J, Guo X, Zhou P and Hong Z 2018 J. Lightwave Technol. 36 2322
[27] Kanda N, Konishi K and Kuwata-Gonokami M 2007 Opt. Express 15 11117
[28] Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Lett. 36 1653
[29] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
[30] Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X and Zhu Y 2013 Phys. Rev. Lett. 110 207401
[31] Pendry J B 2004 Science 306 1353
[32] Zhou J, Chowdhury D R, Zhao R, Azad A K, Chen H T, Soukoulis C M, Taylor A J and O'Hara J F 2012 Phys. Rev. B 86 035448
[33] Chao W, Li H, Wei Z, Yu X and Chan C T 2010 Phys. Rev. Lett. 105 247401
[34] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE T. Antenn. Propag. 63 1
[35] Liu N, Kaiser S and Giessen H 2008 Adv. Mater. 20 4521
[36] Zhou X, Zhao X P and Liu Y 2008 Opt. Express 16 7674
[37] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[38] Xia R, Jing X, Zhu H, Wang W, Tian Y and Hong Z 2017 Opt. Commun. 383 310
[39] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H 2013 Science 340 1304
[40] Rui X, Jing X, Gui X, Ying T, and Zhi H 2017 Opt. Mater. Express 7 977
[41] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X and Tian J G 2015 Opt. Lett. 40 3185
[42] Fang X, Tseng M L, Tsai D P and Zheludev N I 2014 Coherent excitation-selective spectroscopy in planar metamaterials
[43] Tseng M L, Fang X, Savinov V, Wu P C, Ou J Y, Zheludev N I and Tsai D P 2017 Sci. Rep. UK. 7 44488
[44] Ameling R and Giessen H 2013 Laser Photon. Rev. 7 141
[45] Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J. Electromagnet Wave. 27 1850
[1] Integrated system of traditional THz time-domain spectroscopy andasynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波)†, Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[13] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[14] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[15] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
No Suggested Reading articles found!