Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067104    DOI: 10.1088/1674-1056/25/6/067104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principles study of the diffusional phenomena across the clean and Re-doped γ-Ni/γ'-Ni3Al interface of Ni-based single crystal superalloy

Min Sun(孙敏)1, Chong-Yu Wang(王崇愚)1,2
1 Central Iron and Steel Research Institute, Beijing 100081, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys. We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ' phases along the direction perpendicular to the interface. The diffusion mechanisms and the expressions of the diffusion coefficients are presented. The vacancy formation energies, the migration energies, and the activation energies for the diffusing Ni and Al atoms are estimated, and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3-7 (002) layers. The local density-of-states profiles of atoms in each (002) layer in the γ and γ ' phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior.

Keywords:  diffusion      interface      Ni-based superalloy      First-principles calculation  
Received:  03 April 2016      Revised:  14 April 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.-m (Methods of electronic structure calculations)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: 

Project supported by National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).

Corresponding Authors:  Chong-Yu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Min Sun(孙敏), Chong-Yu Wang(王崇愚) First principles study of the diffusional phenomena across the clean and Re-doped γ-Ni/γ'-Ni3Al interface of Ni-based single crystal superalloy 2016 Chin. Phys. B 25 067104

[1] Reed R C 2006 The superalloys: fundamentals and applications (Cambridge: Cambridge University Press)
[2] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[3] Zhu T, Wang C and Gan Y 2010 Acta Mater. 58 2045
[4] Strunz P, Gilles R, Mukherji D, Wiedenmann A, Wahi R P and Zrník J 1999 Mater. Struct. 6 91
[5] Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H and Tokura Y 2004 Science 305 646
[6] Ziegler A, Idrobo J C, Cinibulk M K, Kisielowski C, Browning N D and Ritchie R O 2004 Science 306 1768
[7] Muller D A, Sorsch T, Moccio S, Baumann F H, Evans-Lutterodt K and Timp G 1999 Nature 399 758
[8] Srinivasan R, Banerjee R, Hwang J Y, Viswanathan G B, Tiley J, Dimiduk D M and Fraser H L 2009 Phys. Rev. Lett. 102 086101
[9] Mishin Y 2004 Acta Mater. 52 1451
[10] Kitashima T, Yokokawa T, Yeh A C and Harada H 2008 Intermetallics 16 779
[11] Yasuda H Y, Nakajima H and Koiwa M 1993 Defect Diffus. Forum. 95 823
[12] Gong X, Ma Y, Guo H and Gong S 2015 J. Alloys Compd. 642 117
[13] Kaur I, Mishin Y and Gust W 1995 Fundamentals of grain and interphase boundary diffusion, 3rd edn. (Chichester: John Wiley & Sons)
[14] Janotti A, Krčar M, Fu C L and Reed R C 2004 Phys. Rev. Lett. 92 085901
[15] Watanabe M, Horita Z, Smith D J, McCartney M R, Sano T and Nemoto M 1994 Acta Metall. Mater. 42 3381
[16] Mottura A, Finnis M W and Reed R C 2012 Acta Mater. 60 2866
[17] Murakami H, Warren P J and Harada H 1995 “Atom-probe Microanalyses of Some Ni-base Single Crystal Superalloys”, Proceedings of the 3rd International Charles Parsons Turbine Conference, Materials Engineering in Turbines and Compressors, New Castle, UK pp. 343-350
[18] Warren P J, Cerezo A and Smith G D W 1998 Mater. Sci. Eng. A 250 88
[19] Seeger A 1970 Vacancies and Interstitials in Metals: International Conference Proceedings, North-Holland
[20] Mehrer H 2007 Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes (New York: Springer Science & Business Media)
[21] Lidiard A B 1955 Philos. Mag. 46 1218
[22] Krčar M, Fu C L, Janotti A and Reed R C 2005 Acta Mater. 53 2369
[23] Mantina M, Wang Y, Chen L Q, Liu Z K and Wolverton C 2009 Acta Mater. 57 4102
[24] Manning J R 1964 Phys. Rev. 136 A1758
[25] Zhang X and Wang C Y 2009 Acta Mater. 57 224
[26] Watanabe M, Horita Z, Sano T and Nemoto M 1994 Acta Metall. Mater. 42 3389
[27] Koiwa M and Ishioka S 1983 Philos. Mag. A 48 1
[28] Herzig C and Divinski S 2005 “Diffusion Mechanisms in Intermetallic Compounds”, in: Devendra Gupta (ed.), Diffusion Processes in Advanced Technological Materials (New York: William Andrew Publishing Inc.) pp. 157-161
[29] Koiwa M and Ishioka S 1983 Philos. Mag. A 47 927
[30] Alahmed Z and Fu H 2007 Phys. Rev. B 76 224101
[31] Ehrhart P 1991 Properties and interactions of atomic defects in metals and alloys, in: Landolt-Börnstein, New Series III, Vol. 25 (Berlin: Springer) p. 88
[32] Shewmon P 1989 Diffusion in solids, 2nd edn. (TMS, Warrendale, PA) p. 223
[33] Kornblit L, Pelleg J and Rabinovitch A 1977 Phys. Rev. B 16 1164
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Harada H, Ishida A, Murakami Y, Bhadeshia H K D H and Yamazaki M 1993 Appl. Surf. Sci. 67 299
[40] Volek A, Pyczak F, Singer R F and Mughrabi H 2005 Scr. Mater. 52 141
[41] Yu X X, Wang C Y, Zhang X N, Yan P and Zhang Z 2014 J. Alloys Compd. 582 299
[42] Amouyal Y and Seidman D N 2011 Acta Mater. 59 3321
[43] Reed R C, Yeh A C, Tin S, Babu S S and Miller M K 2004 Scr. Mater. 51 327
[44] Yeh A C and Tin S 2005 Scr. Mater. 52 519
[45] Gong X F, Yang G X, Fu Y H, Xie Y Q, Zhuang J and Ning X J 2009 Comput. Mater. Sci. 47 320
[46] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[47] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[48] Janssen M M P 1973 Metall. Trans. 4 1623
[49] Kawazoe H, Takasugi T and Izumi O 1982 J. Mater. Sci. 17 1303
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[12] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[13] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[14] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[15] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
No Suggested Reading articles found!