CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations |
Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英) |
Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.
|
Received: 27 January 2016
Revised: 26 February 2016
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
68.43.Jk
|
(Diffusion of adsorbates, kinetics of coarsening and aggregation)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China. |
Corresponding Authors:
Bo Xu
E-mail: bxu4@mail.ustc.edu.cn
|
Cite this article:
Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英) Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations 2016 Chin. Phys. B 25 067103
|
[1] |
Wang Q H, Zadeh K K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[2] |
Yang N, Zhai J, Wang D, Chen Y and Jiang L 2010 ACS Nano 4 887
|
[3] |
Ye Y, Yu B, Gao Meng Z H, Zhang H, Dai L and Qin G 2012 Nanotechnology 23 194004
|
[4] |
Sakakibara K, Hill J P and Ariga K 2011 Small 7 1288
|
[5] |
Kara A, Enriquez H, Seitsonend A P, Voone L C L Y, Vizzini S, Aufrayg B and Oughaddoub H 2012 Sci. Rep. 67 1
|
[6] |
Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[7] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[8] |
Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
|
[9] |
Zhang C and Yan S 2012 J. Phys. Chem. C 116 4163
|
[10] |
Wang Y, Zheng J, Ni Z, Fei R, Liu Q, He R Q, Xu C, Zhou J, Gao Z and Lu J 2011 Nanotechnology 7 1250037
|
[11] |
Zheng F and Zhang C 2012 Nanoscale Res. Lett. 7 422
|
[12] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[13] |
Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
|
[14] |
Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
|
[15] |
Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[16] |
Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
|
[17] |
Sahin H and Peeters F M 2013 Phys. Rev. B 87 085423
|
[18] |
Wang J, Li J, Li S S and Liu Y 2013 J. Appl. Phys. 114 124309
|
[19] |
Li F, Zhang C W and Luan H X 2013 J. Nanopart. Res. 15 1972
|
[20] |
Huang J, Chen H J, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Chin. Phys. Lett. 30 017103
|
[21] |
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri L C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
|
[22] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini B S and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[23] |
Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys.: Condens. Matter 24 172001
|
[24] |
Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211
|
[25] |
Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[26] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[27] |
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
|
[28] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[29] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[30] |
Liu G, Lei X L, Wu M S, Xu B and Ouyang C Y 2014 Europhys. Lett. 106 47001
|
[31] |
Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y and Nakamura H 2006 Angew. Chem. Int. Ed. 45 6303
|
[32] |
Hussain T, Kaewmaraya T, Chakraborty S and Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900
|
[33] |
Yang H C, Wang J and Liu Y 2014 J. Appl. Phys. 116 083501
|
[34] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[35] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[36] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[37] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[38] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[39] |
Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
|
[40] |
Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
|
[41] |
Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
|
[42] |
Liu G, Lei X L, Wu M S, Xu B and Ouyang C Y 2014 J. Phys.: Condens. Matter 26 355007
|
[43] |
Lin X Q and Ni J 2012 Phys. Rev. B 86 075440
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|