Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067103    DOI: 10.1088/1674-1056/25/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英)
Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China
Abstract  

The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.

Keywords:  first-principles calculations      silicene and silicane      atom adsorption      atom diffusion  
Received:  27 January 2016      Revised:  26 February 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: 

Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

Corresponding Authors:  Bo Xu     E-mail:  bxu4@mail.ustc.edu.cn

Cite this article: 

Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英) Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations 2016 Chin. Phys. B 25 067103

[1] Wang Q H, Zadeh K K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Yang N, Zhai J, Wang D, Chen Y and Jiang L 2010 ACS Nano 4 887
[3] Ye Y, Yu B, Gao Meng Z H, Zhang H, Dai L and Qin G 2012 Nanotechnology 23 194004
[4] Sakakibara K, Hill J P and Ariga K 2011 Small 7 1288
[5] Kara A, Enriquez H, Seitsonend A P, Voone L C L Y, Vizzini S, Aufrayg B and Oughaddoub H 2012 Sci. Rep. 67 1
[6] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[7] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[8] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
[9] Zhang C and Yan S 2012 J. Phys. Chem. C 116 4163
[10] Wang Y, Zheng J, Ni Z, Fei R, Liu Q, He R Q, Xu C, Zhou J, Gao Z and Lu J 2011 Nanotechnology 7 1250037
[11] Zheng F and Zhang C 2012 Nanoscale Res. Lett. 7 422
[12] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[13] Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
[14] Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
[15] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[16] Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
[17] Sahin H and Peeters F M 2013 Phys. Rev. B 87 085423
[18] Wang J, Li J, Li S S and Liu Y 2013 J. Appl. Phys. 114 124309
[19] Li F, Zhang C W and Luan H X 2013 J. Nanopart. Res. 15 1972
[20] Huang J, Chen H J, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Chin. Phys. Lett. 30 017103
[21] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri L C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
[22] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini B S and Aufray B 2010 Appl. Phys. Lett. 97 223109
[23] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys.: Condens. Matter 24 172001
[24] Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211
[25] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[26] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[27] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[28] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[29] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[30] Liu G, Lei X L, Wu M S, Xu B and Ouyang C Y 2014 Europhys. Lett. 106 47001
[31] Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y and Nakamura H 2006 Angew. Chem. Int. Ed. 45 6303
[32] Hussain T, Kaewmaraya T, Chakraborty S and Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900
[33] Yang H C, Wang J and Liu Y 2014 J. Appl. Phys. 116 083501
[34] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[40] Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
[41] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
[42] Liu G, Lei X L, Wu M S, Xu B and Ouyang C Y 2014 J. Phys.: Condens. Matter 26 355007
[43] Lin X Q and Ni J 2012 Phys. Rev. B 86 075440
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!