CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function |
S M Khidzir, M F M Halid, W A T Wan Abdullah |
Department of Physics, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia |
|
|
Abstract In this work, we first use momentum density studies to understand strongly correlated electron behavior, which is typically seen in transition metal oxides. We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW (G is Green's function and W is the screened Coulomb interaction) approximation (GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy. These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri. Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2 before the Fermi break. The ground state momentum densities differ significantly from the quasiparticle momentum density, thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function. Finally we perform a calculation of the quasiparticle renormalization function, giving a quantitative description of the discontinuity of the GWA momentum density.
|
Received: 22 December 2015
Revised: 04 March 2016
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
Corresponding Authors:
S M Khidzir
E-mail: sidiqmk@gmail.com
|
Cite this article:
S M Khidzir, M F M Halid, W A T Wan Abdullah Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function 2016 Chin. Phys. B 25 067105
|
[1] |
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
|
[2] |
O'regan B and Grfitzeli M 1991 Nature 353 737
|
[3] |
Akinaga H and Shima H 2010 Proc. IEEE 98 2237
|
[4] |
Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
|
[5] |
Sarhan A, Nakanishi H, Diño W A, Kishi H and Kasai H 2012 Surf. Sci. 606 239
|
[6] |
Oka K, Yanagida T, Nagashima K, Kanai M, Xu B, Park B H, Katayama-Yoshida H and Kawai T 2012 J. Am. Chem. Soc. 134 2535
|
[7] |
Yoo D S, Ahn K, Cho S B, Lee M and Chung Y C 2012 Jpn. J. Appl. Phys. 51 06FG14
|
[8] |
Park S G, Magyari-Kope B and Nishi Y 2008 November In Non-Volatile Memory Technology Symposium, NVMTS 2008, 9th Annual, IEEE pp. 1-5
|
[9] |
Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
|
[10] |
Bader R F 1990 Atoms in Molecules (New York: John Wiley & Sons, Ltd)
|
[11] |
Peng H Y, Li Y F, Lin W N, Wang Y Z, Gao X Y and Wu T 2012 Sci. Rep. 2
|
[12] |
Martens K, Radu I P, Mertens S, Shi X, Nyns L, Cosemans S, Favia P, Bender H, Conard T, Schaekers M and De Gendt S 2012 J. Appl. Phys. 112 124501
|
[13] |
Huefner M, Ghosh R K, Freeman E, Shukla N, Paik H, Schlom D G and Datta S 2014 Nano Lett. 14 6115
|
[14] |
Sternemann C, Hämäläinen K, Kaprolat A, Soininen A, Döring G, Kao C C, Manninen S and Schülke W 2000 Phys. Rev. B 62 R7687
|
[15] |
Cooper M, Mijnarends P, Shiotani N, Sakai N and Bansil A 2004 X-ray Compton scattering (OUP Oxford)
|
[16] |
Cooper M J 1985 Rep. Prog. Phys. 48 415
|
[17] |
Lam L and Platzman P M 1974 Phys. Rev. B 9 5122
|
[18] |
Kubo Y 1996 J. Phys. Soc. Jpn. 65 16
|
[19] |
Schülke W, Stutz G, Wohlert F and Kaprolat A 1996 Phys. Rev. B 54 14381
|
[20] |
Hedin L 1965 Phys. Rev. 139 A796
|
[21] |
Olevano V, Titov A, Ladisa M, Hämäläinen K, Huotari S and Holzmann M 2012 Phys. Rev. B 86 195123
|
[22] |
Kubo Y 1996 J. Phys. Soc. Jpn. 65 16
|
[23] |
Huotari S, Sternemann C, Volmer M, Soininen J A, Monaco G and Schülke W 2007 Phys. Rev. B 76 235106
|
[24] |
Huotari S, Soininen J A, Pylkkänen T, Hämäläinen K, Issolah A, Titov A, McMinis J, Kim J, Esler K, Ceperley D M and Holzmann M 2010 Phys. Rev. Lett. 105 086403
|
[25] |
Kubo Y 2001 J. Phys. Chem. Solids 62 2199
|
[26] |
Kubo Y 2004 J. Phys. Chem. Solids 65 2077
|
[27] |
Kubo Y 2005 J. Phys. Chem. Solids 66 2202
|
[28] |
Xiao-Li Z, Ke Y, Long-Quan X, Yong-Peng M, Shuai Y, Dong-Dong N, Xu K, Ya-Wei L and Lin-Fan Z 2015 Chin. Phys. B 24 033301
|
[29] |
Hu X L, Qu Y Z, Zhang S B and Zhang Y 2012 Chin. Phys. B 21 103401
|
[30] |
Ye D D, Qi Y Y, Hu Y H and Ning L N 2013 Chin. Phys. B 22 053401
|
[31] |
Massidda S, Continenza A, Posternak M and Baldereschi A 1997 Phys. Rev. B 55 13494
|
[32] |
Yamasaki A and Fujiwara T 2002 Phys. Rev. B 66 245108
|
[33] |
Jiang H, Gomez-Abal R I, Rinke P and Scheffler M 2010 Phys. Rev. B 82 045108
|
[34] |
Rödl C, Fuchs F, Furthmüller J and Bechstedt F 2009 Phys. Rev. B 79 235114
|
[35] |
Gong S and Liu B G 2012 Chin. Phys. B 21 057104
|
[36] |
Zhang P, Kong C G, Zheng C, Wang X Q, Ma Y, Feng J B, Jiao Y Q and Lu G W 2015 Chin. Phys. B 24 024221
|
[37] |
Wang R, Xu M S and Pi X D 2015 Chin. Phys. B 24 086807
|
[38] |
Yi Z J 2015 Chin. Phys. Lett. 32 017101
|
[39] |
Lu T Y, Chen D Y and Huang M C 2006 Chin. Phys. Lett. 23 943
|
[40] |
Liu Y L 2013 Chin. Phys. Lett. 30 047101
|
[41] |
Wang T D and Huai P 2013 Chin. Phys. Lett. 30 067201
|
[42] |
Grüneis A, Kresse G, Hinuma Y and Oba F 2014 Phys. Rev. Lett. 112 096401
|
[43] |
Pyykko P 2011 Chem. Rev. 112 371
|
[44] |
Pyykkö P, Tokman M and Labzowsky L N 1998 Phys. Rev. A 57 R689
|
[45] |
Uehling E A 1935 Phys. Rev. 48 55
|
[46] |
Lebégue S, Arnaud B, Alouani M and Bloechl P E 2003 Phys. Rev. B 67 155208
|
[47] |
Gonze X, Beuken J M, Caracas R, et al. 2002 Comput. Mater. Sci. 25 478
|
[48] |
Gonze X 2005 Zeitschrift fäur Kristallographie-Crystalline Materials 220 558
|
[49] |
Aryasetiawan F and Karlsson K 1996 Phys. Rev. B 54 5353
|
[50] |
Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296
|
[51] |
Faleev S V, van Schilfgaarde M and Kotani T 2004 Phys. Rev. Lett. 93 126406
|
[52] |
Aryasetiawan F and Gunnarsson O 1995 Phys. Rev. Lett. 74 3221
|
[53] |
Li J L, Rignanese G M and Louie S G 2005 Phys. Rev. B 71 193102
|
[54] |
Ye L H, Asahi R, Peng L M and Freeman A J 2012 J. Chem. Phys. 137 154110
|
[55] |
Chiodo L, García-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207
|
[56] |
van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402
|
[57] |
Malashevich A, Jain M and Louie S G 2014 Phys. Rev. B 89 075205
|
[58] |
Patrick C E and Giustino F 2012 J. Phys.: Condens. Matter 24 202201
|
[59] |
Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339
|
[60] |
Fujimori A and Minami F 1984 Phys. Rev. B 30 957
|
[61] |
Hüfner S, Osterwalder J, Riesterer T and Hulliger F 1984 Solid State Commun. 52 793
|
[62] |
Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S and Sato S 1994 J. Phys. Soc. Jpn. 63 347
|
[63] |
Rangan S, Katalinic S, Thorpe R, Bartynski R A, Rochford J and Galoppini E 2009 J. Phys. Chem. C 114 1139
|
[64] |
Kubo Y 1997 J. Phys. Soc. Jpn. 66 2236
|
[65] |
Fukamachi T, Hosoya S, Iway K and Hayakawa K 1973 Phys. Lett. A 42 477
|
[66] |
Limandri S P, Fadanelli R C, Behar M, Nagamine L C, Fernández-Varea J M, Abril I, Garcia-Molina R, Montanari C C, Aguiar J C, Mitnik D and Miraglia J E 2014 Eur. Phys. J. D 68 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|