Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067105    DOI: 10.1088/1674-1056/25/6/067105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function

S M Khidzir, M F M Halid, W A T Wan Abdullah
Department of Physics, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract  

In this work, we first use momentum density studies to understand strongly correlated electron behavior, which is typically seen in transition metal oxides. We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW (G is Green's function and W is the screened Coulomb interaction) approximation (GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy. These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri. Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2 before the Fermi break. The ground state momentum densities differ significantly from the quasiparticle momentum density, thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function. Finally we perform a calculation of the quasiparticle renormalization function, giving a quantitative description of the discontinuity of the GWA momentum density.

Keywords:  elastic and Compton scattering      density functional theory      local density approximation      gradient and other corrections      elements      oxides      nitrides      borides      carbides      chalcogenides  
Received:  22 December 2015      Revised:  04 March 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Corresponding Authors:  S M Khidzir     E-mail:  sidiqmk@gmail.com

Cite this article: 

S M Khidzir, M F M Halid, W A T Wan Abdullah Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function 2016 Chin. Phys. B 25 067105

[1] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] O'regan B and Grfitzeli M 1991 Nature 353 737
[3] Akinaga H and Shima H 2010 Proc. IEEE 98 2237
[4] Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
[5] Sarhan A, Nakanishi H, Diño W A, Kishi H and Kasai H 2012 Surf. Sci. 606 239
[6] Oka K, Yanagida T, Nagashima K, Kanai M, Xu B, Park B H, Katayama-Yoshida H and Kawai T 2012 J. Am. Chem. Soc. 134 2535
[7] Yoo D S, Ahn K, Cho S B, Lee M and Chung Y C 2012 Jpn. J. Appl. Phys. 51 06FG14
[8] Park S G, Magyari-Kope B and Nishi Y 2008 November In Non-Volatile Memory Technology Symposium, NVMTS 2008, 9th Annual, IEEE pp. 1-5
[9] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[10] Bader R F 1990 Atoms in Molecules (New York: John Wiley & Sons, Ltd)
[11] Peng H Y, Li Y F, Lin W N, Wang Y Z, Gao X Y and Wu T 2012 Sci. Rep. 2
[12] Martens K, Radu I P, Mertens S, Shi X, Nyns L, Cosemans S, Favia P, Bender H, Conard T, Schaekers M and De Gendt S 2012 J. Appl. Phys. 112 124501
[13] Huefner M, Ghosh R K, Freeman E, Shukla N, Paik H, Schlom D G and Datta S 2014 Nano Lett. 14 6115
[14] Sternemann C, Hämäläinen K, Kaprolat A, Soininen A, Döring G, Kao C C, Manninen S and Schülke W 2000 Phys. Rev. B 62 R7687
[15] Cooper M, Mijnarends P, Shiotani N, Sakai N and Bansil A 2004 X-ray Compton scattering (OUP Oxford)
[16] Cooper M J 1985 Rep. Prog. Phys. 48 415
[17] Lam L and Platzman P M 1974 Phys. Rev. B 9 5122
[18] Kubo Y 1996 J. Phys. Soc. Jpn. 65 16
[19] Schülke W, Stutz G, Wohlert F and Kaprolat A 1996 Phys. Rev. B 54 14381
[20] Hedin L 1965 Phys. Rev. 139 A796
[21] Olevano V, Titov A, Ladisa M, Hämäläinen K, Huotari S and Holzmann M 2012 Phys. Rev. B 86 195123
[22] Kubo Y 1996 J. Phys. Soc. Jpn. 65 16
[23] Huotari S, Sternemann C, Volmer M, Soininen J A, Monaco G and Schülke W 2007 Phys. Rev. B 76 235106
[24] Huotari S, Soininen J A, Pylkkänen T, Hämäläinen K, Issolah A, Titov A, McMinis J, Kim J, Esler K, Ceperley D M and Holzmann M 2010 Phys. Rev. Lett. 105 086403
[25] Kubo Y 2001 J. Phys. Chem. Solids 62 2199
[26] Kubo Y 2004 J. Phys. Chem. Solids 65 2077
[27] Kubo Y 2005 J. Phys. Chem. Solids 66 2202
[28] Xiao-Li Z, Ke Y, Long-Quan X, Yong-Peng M, Shuai Y, Dong-Dong N, Xu K, Ya-Wei L and Lin-Fan Z 2015 Chin. Phys. B 24 033301
[29] Hu X L, Qu Y Z, Zhang S B and Zhang Y 2012 Chin. Phys. B 21 103401
[30] Ye D D, Qi Y Y, Hu Y H and Ning L N 2013 Chin. Phys. B 22 053401
[31] Massidda S, Continenza A, Posternak M and Baldereschi A 1997 Phys. Rev. B 55 13494
[32] Yamasaki A and Fujiwara T 2002 Phys. Rev. B 66 245108
[33] Jiang H, Gomez-Abal R I, Rinke P and Scheffler M 2010 Phys. Rev. B 82 045108
[34] Rödl C, Fuchs F, Furthmüller J and Bechstedt F 2009 Phys. Rev. B 79 235114
[35] Gong S and Liu B G 2012 Chin. Phys. B 21 057104
[36] Zhang P, Kong C G, Zheng C, Wang X Q, Ma Y, Feng J B, Jiao Y Q and Lu G W 2015 Chin. Phys. B 24 024221
[37] Wang R, Xu M S and Pi X D 2015 Chin. Phys. B 24 086807
[38] Yi Z J 2015 Chin. Phys. Lett. 32 017101
[39] Lu T Y, Chen D Y and Huang M C 2006 Chin. Phys. Lett. 23 943
[40] Liu Y L 2013 Chin. Phys. Lett. 30 047101
[41] Wang T D and Huai P 2013 Chin. Phys. Lett. 30 067201
[42] Grüneis A, Kresse G, Hinuma Y and Oba F 2014 Phys. Rev. Lett. 112 096401
[43] Pyykko P 2011 Chem. Rev. 112 371
[44] Pyykkö P, Tokman M and Labzowsky L N 1998 Phys. Rev. A 57 R689
[45] Uehling E A 1935 Phys. Rev. 48 55
[46] Lebégue S, Arnaud B, Alouani M and Bloechl P E 2003 Phys. Rev. B 67 155208
[47] Gonze X, Beuken J M, Caracas R, et al. 2002 Comput. Mater. Sci. 25 478
[48] Gonze X 2005 Zeitschrift fäur Kristallographie-Crystalline Materials 220 558
[49] Aryasetiawan F and Karlsson K 1996 Phys. Rev. B 54 5353
[50] Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296
[51] Faleev S V, van Schilfgaarde M and Kotani T 2004 Phys. Rev. Lett. 93 126406
[52] Aryasetiawan F and Gunnarsson O 1995 Phys. Rev. Lett. 74 3221
[53] Li J L, Rignanese G M and Louie S G 2005 Phys. Rev. B 71 193102
[54] Ye L H, Asahi R, Peng L M and Freeman A J 2012 J. Chem. Phys. 137 154110
[55] Chiodo L, García-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207
[56] van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402
[57] Malashevich A, Jain M and Louie S G 2014 Phys. Rev. B 89 075205
[58] Patrick C E and Giustino F 2012 J. Phys.: Condens. Matter 24 202201
[59] Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339
[60] Fujimori A and Minami F 1984 Phys. Rev. B 30 957
[61] Hüfner S, Osterwalder J, Riesterer T and Hulliger F 1984 Solid State Commun. 52 793
[62] Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S and Sato S 1994 J. Phys. Soc. Jpn. 63 347
[63] Rangan S, Katalinic S, Thorpe R, Bartynski R A, Rochford J and Galoppini E 2009 J. Phys. Chem. C 114 1139
[64] Kubo Y 1997 J. Phys. Soc. Jpn. 66 2236
[65] Fukamachi T, Hosoya S, Iway K and Hayakawa K 1973 Phys. Lett. A 42 477
[66] Limandri S P, Fadanelli R C, Behar M, Nagamine L C, Fernández-Varea J M, Abril I, Garcia-Molina R, Montanari C C, Aguiar J C, Mitnik D and Miraglia J E 2014 Eur. Phys. J. D 68 1
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[8] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[11] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[12] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[13] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!