|
|
Anomalous diffusion in branched elliptical structure |
Kheder Suleiman1,2, Xuelan Zhang(张雪岚)2, Erhui Wang(王二辉)1, Shengna Liu(刘圣娜)1, and Liancun Zheng(郑连存)2,† |
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Diffusion in narrow curved channels with dead-ends as in extracellular space in the biological tissues, e.g., brain, tumors, muscles, etc. is a geometrically induced complex diffusion and is relevant to different kinds of biological, physical, and chemical systems. In this paper, we study the effects of geometry and confinement on the diffusion process in an elliptical comb-like structure and analyze its statistical properties. The ellipse domain whose boundary has the polar equation $\rho \left( \theta \right)=\frac{b}{\sqrt {1-e^{2}\cos^{2}\theta } }$ with $0<e<1$, $\theta \in \left[ 0,2\pi \right]$, and $b$ as a constant, can be obtained through stretched radius $r$ such that $\varUpsilon =r \rho \left( \theta \right)$ with $r\in \left[ 0,1 \right]$. We suppose that, for fixed radius $r=R$, an elliptical motion takes place and is interspersed with a radial motion inward and outward of the ellipse. The probability distribution function (PDF) in the structure and the marginal PDF and mean square displacement (MSD) along the backbone are obtained numerically. The results show that a transient sub-diffusion behavior dominates the process for a time followed by a saturating state. The sub-diffusion regime and saturation threshold are affected by the length of the elliptical channel lateral branch and its curvature.
|
Received: 16 January 2022
Revised: 01 March 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
02.50.Fz
|
(Stochastic analysis)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.60.-k
|
(Transport processes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772046 and 81870345). |
Corresponding Authors:
Liancun Zheng
E-mail: liancunzheng@ustb.edu.cn
|
Cite this article:
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存) Anomalous diffusion in branched elliptical structure 2023 Chin. Phys. B 32 010202
|
[1] Stein W D 1986 Transport and diffusion across cell membranes (Academic Press) [2] Bressloff P C 2014 Stochastic Processes in Cell Biology (Springer) [3] Sibatov R T and Uchaikin V V 2015 J. Comput. Phys. 293 409 [4] Mendez V, Fedotov S and Horsthemke W 2010 Reaction-Transport Systems (Springer) [5] Viswanathan G M, Luz M, Raposo E P and Stanley H E 2011 The Physics of Foraging (Cambridge University Press) [6] Dix J A and Verkman A S 2008 Annu. Rev. Biophys. 37 247 [7] Weiss M, Hashimoto H and Nilsson T 2003 Biophys. J. 84 4043 [8] Höfling F and Franosch T 2013 Rep. Prog. Phys. 76 46602 [9] Sun H G, Sheng H, Chen Y Q, Chen W and Yu Z B 2013 Chin. Phys. Lett. 30 46601 [10] Wu W X, Zheng Z G, Song Y L, Han Y R, Sun Z C and Li C P 2020 Chin. Phys. B 29 90503 [11] Wang B, Kuo J, Bae S C and Granick S 2015 Nat. Mater. 11 481 [12] Metzler R, Jeon J H and Cherstvy A G 2016 Biochim. Biophys. Acta - Biomembr. 1858 2451 [13] Metzler R 2020 Eur. Phys. J. Spec. Top. 229 711 [14] Metzler R 2017 Biophys. J. 112 413 [15] Jeon J H, Javanainen M, Martinez-Seara H, Metzler R and Vattulainen I 2016 Phys. Rev. X 6 21006 [16] Szymanski J and Weiss M 2009 Phys. Rev. Lett. 103 38102 [17] Gupta S, Mel J, Perera R M, Zolnierczuk P and Schneider G J 2018 J. Phys. Chem. Lett. 9 2956 [18] Tabei S, Burov S, Kim H Y, Kuznetsov A, Huynh T, Jureller J, Philipson L H, Dinner A R and Scherer N F 2013 Proc. Natl. Acad. Sci. USA 110 4911 [19] Xiao F, Hrabe J and Hrabetova S 2015 Biophys. J. 108 2384 [20] Goeppert N, Goldscheider N and Berkowitz B 2020 Water Res. 178 115755 [21] Caspi A, Granek R and Elbaum M 2000 Phys. Rev. Lett. 85 5655 [22] Reverey J F, Jeon J H, Bao H, Leippe M, Metzler R and Selhuber-Unkel C 2015 Sci. Rep. 5 11690 [23] Rammal R and Toulouse G 1983 J. Phys. Lett. 44 13 [24] Sokolov I M 2012 Soft Matter 8 9043 [25] Metzler R, Jeon J H, Cherstvy A G and Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128 [26] Ben-Avraham D and Havlin S 2000 Diffusion and reactions in fractals and disordered systems (Cambridge university press) [27] Gao S L, Zhong S C, Wei K and Ma H 2012 Acta Phys. Sin. 61 6 (in Chinese) [28] Goodknight R C, Klikoff W A and Fatt I 1960 J. Phys. Chem. 64 1162 [29] Pinner A and Nye P H 1982 J. Soil Sci. 33 25 [30] Rao P, Jessup R E and Addiscott T M 1982 Soil Sci. 133 154 [31] Tao A, Tao L and Nicholson C 2005 J. Theor. Biol. 234 525 [32] Hrabe J, HrabeTová S and Segeth K 2004 Biophys. J. 87 1606 [33] Ernest P and S. B R 1964 J. Gen. Physiol. 47 1129 [34] Safford R E, Bassingthwaighte E A and Bassingthwaighte J B 1978 J. Gen. Physiol. 72 513 [35] Santamaria F, Wils S, De Schutter E and Augustine G J 2006 Neuron 52 635 [36] Iomin A, Mendéz V and Horsthemke W 2018 Fractional dynamics in comb-like structures (World Scientific) [37] Weiss G H and Havlin S 1986 Phys. A 134 474 [38] Weiss G H and Havlin S 1987 Philos. Mag. B 56 941 [39] Arkhincheev V E and Baskin E M 1991 Sov. Phys. JETP 73 161 [40] Méndez V, Iomin A, Horsthemke W and Campos D 2017 J. Stat. Mech. Theory Exp. 2017 [41] Méndez V and Iomin A 2013 Chaos Soliton. Fract. 53 46 [42] Iomin A 2012 Phys. Rev. E 86 32101 [43] Arkhincheev V E, Kunnen E and Baklanov M R 2011 Microelectron. Eng. 88 694 [44] Liu L 2018 J. Comput. Math. 36 563 [45] Liu L, Zheng L and Liu F 2017 J. Mol. Liq. 233 326 [46] Iomin A and Méndez V 2016 Chaos Soliton. Fract. 82 142 [47] Dzhanoev A R and Sokolov I M 2018 Chaos Soliton. Fract. 106 330 [48] Havlin S, Kiefer J E and Weiss G H 1987 Phys. Rev. A 36 1403 [49] Yuste S B, Abad E and Baumgaertner A 2016 Phys. Rev. E 94 012118 [50] Iomin A 2011 Phys. Rev. E 83 052106 [51] Sandev T, Iomin A and Kantz H 2015 Phys. Rev. E 91 032108 [52] Sandev T, Iomin A and Kantz H 2017 Phys. Rev. E 95 52107 [53] Fan Y, Liu L, Zheng L and Li X 2019 Sci. Numer. Simul. 77 225 [54] Wang Z and Zheng L 2020 Phys. A 549 123889 [55] Iomin A 2021 Chaos Soliton. Fract. 142 110488 [56] Suleiman K, Zheng L, Liu C, Zhang X and Wang E 2020 Int. Commun. Heat Mass Transf. 117 104733 [57] Suleiman K, Song Q, Zhang X, Liu S and Zheng L 2022 Chaos Soliton. Fract. 155 111742 [58] Saxton M J 2007 Biophys. J. 92 1178 [59] Baskin E and Iomin A 2004 Phys. Rev. Lett. 93 120603 [60] Sandev T, Iomin A and Kocarev L 2020 Phys. Rev. E 102 042109 [61] Singh R K, Sandev T, Iomin A and Metzler R 2021 J. Phys. A 54 404006 [62] Wang Z, Lin P and Wang E 2021 Chaos Soliton. Fract. 148 111009 [63] Sandev T, Domazetoski V, Iomin A and Kocarev L 2021 Mathematics 9 1 [64] Dagdug L, Berezhkovskii A M, Makhnovskii Y A and Zitserman V Y 2007 J. Chem. Phys. 127 224712 [65] Berezhkovskii A M and Dagdug L 2011 J. Chem. Phys. 134 124109 [66] Ogawa N 2010 Phys. Rev. E 81 61113 [67] Ogawa N 2013 Phys. Lett. A 377 2465 [68] Chávez Y, Chacón-Acosta G and Dagdug L 2018 J. Chem. Phys. 148 214106 [69] Castro-Villarreal P, Villada-Balbuena A, Méndez-Alcaraz J M, Castañeda-Priego R and Estrada-Jiménez S 2014 J. Chem. Phys. 140 214115 [70] Assenza S and Mezzenga R 2018 J. Chem. Phys. 148 54902 [71] Dobrowolski T and Jarmoliński A 2018 Results Phys. 8 48 [72] Burada P S, Hnggi P, Marchesoni F, Schmid G and Talkner P 2010 Chem. Phys. Chem. 10 [73] Bénichou O, Illien P, Oshanin G, Sarracino A and Voituriez R 2018 J. Phys. Condens. Matter 30 443001 [74] Hrabětová S, Hrabe J and Nicholson C 2003 J. Neurosci. 23 8351 [75] Nicholson C and Hrabětová S 2017 Biophys. J. 113 2133 [76] Tao L and Nicholson C 2004 J. Theor. Biol. 229 59 [77] Sykova E and Nicholson C 2008 Physiol. Rev. 88 1277 [78] Bueno-Orovio A, Kay D, Grau V, Rodriguez B and Burrage K 2014 J. R. Soc. Interface 11 20140352 [79] Wolak D J and Thorne R G 2013 Mol. Pharm. 10 1492 [80] Vendel E, Rottschfer V and Lange E 2019 Fluids Barriers CNS 16 12 [81] Caratelli D, Natalini P, Ricci P E and Yarovoy A 2010 Appl. Math. Comput. 216 556 [82] Domazetoski V, Masó-Puigdellosas A, Sandev T, Méndez V, Iomin A and Kocarev L 2020 Phys. Rev. Res. 2 033027 [83] Ghosh S K, Cherstvy A G and Metzler R 2014 Phys. Chem. Chem. Phys. 17 1847 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|