INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime |
Jian Shao(邵健)1, Jie Li(李杰)1, Ying-Hua Wang(王英华)1, Jia-Qi Li(李家奇)1, Zheng-Gao Dong(董正高)1, Lin Zhou(周林)2 |
1. Physics Department and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China; 2. School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China |
|
|
Abstract The obvious circular dichroism (CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabilities of light manipulation. In this paper, we propose a dual-chiral metamaterial composed of bilayer asymmetric split ring resonators (ASRR) that are in mirror-symmetry shape. It is demonstrated that the CD can get enhancement in the terahertz regime. Moreover, the CD can be further improved by modulating the asymmetry of ASRR. The enhanced CD effect in the terahertz regime has great potential applications in sensing, biomedical imaging, and molecular recognition.
|
Received: 26 October 2015
Revised: 08 January 2016
Accepted manuscript online:
|
PACS:
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174051, 11374049, and 11204139), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131283), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Zheng-Gao Dong
E-mail: zgdong@seu.edu.cn
|
Cite this article:
Jian Shao(邵健), Jie Li(李杰), Ying-Hua Wang(王英华), Jia-Qi Li(李家奇), Zheng-Gao Dong(董正高), Lin Zhou(周林) Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime 2016 Chin. Phys. B 25 058103
|
[1] |
Papakostas A, Potts A, Pagnall D M, Prosvirnin S L, Coles H J and Zheludev N I 2003 Phys. Rev. Lett. 90 107404
|
[2] |
Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M and Zheludev N I 2009 Phys. Rev. B 79 035407
|
[3] |
Soukoulis C M, Liden S and Wegener M 2007 Science 315 47
|
[4] |
Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
|
[5] |
Vallius T, Jefimovs K, Turunen J, Vahimaa P and Svirko Y 2003 Appl. Phys. Lett. 83 234
|
[6] |
Shi H Y, Li J X, Zhang A X, Wang J F and Xu Z 2014 Chin. Phys. B 23 118101
|
[7] |
Liu D Y, Luo X Y, Liu J J and Dong J F 2013 Chin. Phys. B 22 124202
|
[8] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
|
[9] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[10] |
Shao J, Li J, Li J Q, Wang Y K, Dong Z G, Lu W B and Zhai Y 2013 Chin. Phys. B 22 107804
|
[11] |
Cao T, Wei C and Zhang L 2014 Opt. Express 4 1526
|
[12] |
Liu G C, Li C and Fang G Y 2015 Chin. Phys. B 24 014101
|
[13] |
Ye Y and He S 2010 Appl. Phys. Lett. 96 203501
|
[14] |
Wan M L, Yuan S M, Dai K J, Song Y L, Zhou F Q and He J N 2014 Chin. Phys. B 23 107808
|
[15] |
Zhao Y, Belkin M A and Alú A 2012 Nat. Commun. 3 870
|
[16] |
Zhu L, Meng F Y, Dong L, Fu J H, Zhang F and Wu Q 2013 Opt. Express 21 32099
|
[17] |
Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X and Zhai Y 2013 Appl. Phys. Lett. 102 034106
|
[18] |
Shao J, Li J, Wang Y H, Li J Q, Chen Q and Dong Z G 2014 J. Appl. Phys. 115 243503
|
[19] |
Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J and Svirko Y 2005 Phys. Rev. Lett. 95 227401
|
[20] |
Bai B, Svirko Y, Turunen J and Vallius T 2007 Phys. Rev. A 76 023811
|
[21] |
Decker M, Klein M W, Wegener M and Linden S 2007 Opt. Lett. 32 856
|
[22] |
Kwon D H, Werner P L and Werner D H 2008 Opt. Express 16 11802
|
[23] |
Decker M, Zhao R, Soukoulis C M, Linden S and Wegener M 2010 Opt. Lett. 35 1593
|
[24] |
Cao T, Zhang L, Simpson R E, Wei C and Cryan M J 2013 Opt. Express 21 27841
|
[25] |
Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X and Zhu Y 2013 Phys. Rev. Lett. 110 207401
|
[26] |
Hannam K, Powell D A, Shadrivov I V and Kivshar Y S 2014 Phys. Rev. B 89 125105
|
[27] |
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
|
[28] |
Plum E, Fedotov V A and Zheludev N I 2008 Appl. Phys. Lett. 93 191911
|
[29] |
Plum E, Liu X X, Fedotov V A, Chen Y, Tsai D P and Zheludev N I 2009 Phys. Rev. Lett. 102 113902
|
[30] |
Singh R, Plum E, Zhang W and Zheludev N I 2010 Opt. Express 18 13425
|
[31] |
Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
|
[32] |
Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
|
[33] |
Tonouchi M 2007 Nat. Photonics 1 97
|
[34] |
Taflove A and Hagness S C 2005 Computational Electrodynamics (3rd edn.) (Boston: Artech House)
|
[35] |
Gao W, Leung H M, Li Y, Chen H and Tam W Y 2011 J. Opt. 13 115101
|
[36] |
Gao W, Ng C Y, Leung H M, Li Y, Chen H and Tam W Y 2012 J. Opt. Soc. Am. B 29 3021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|