Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118103    DOI: 10.1088/1674-1056/ac6494
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating

Liu-Li Wang(王刘丽)1, Yang Gu(顾阳)1, Yi-Jing Chen(陈怡静)1, Ya-Xian Ni(倪亚贤)2,†, and Wen Dong(董雯)1,‡
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 Soochow College, Soochow University, Suzhou 215006, China
Abstract  Circular dichroism (CD) has shown very interesting possibilities as a means to characterize the chiral signal of a chiral structure. Here, we theoretically demonstrated enhanced and tunable CD in the visible light regime using a composite structure consisting of a double-layer metal grating gaped by a dielectric waveguide layer. Based on the coupling of the waveguide modes and the localized plasmonic resonances, the CD could reach a maximum value as high as 0.52 at 635 nm, which is four times higher than the CD value obtained in a conventional double-layer grating without the waveguide coupling effect. Furthermore, the spectral positions of the enhanced CD bands could be easily tuned by controlling the structural parameters. The proposed hybrid double-grating and waveguide structures could have potential applications in chiral selective imaging, sensing and spectroscopy, especially where the transmission measurement is required.
Keywords:  circular dichroism      chiral metamaterial      waveguide      surface plasmon  
Received:  23 November 2021      Revised:  27 March 2022      Accepted manuscript online:  06 April 2022
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Gn (Optical waveguides and couplers)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474215).
Corresponding Authors:  Ya-Xian Ni, Wen Dong     E-mail:  niyaxian@suda.edu.cn;dongwen@suda.edu.cn

Cite this article: 

Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯) Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating 2022 Chin. Phys. B 31 118103

[1] Wilson J C, Gutsche P, Herrmann S, Burger S and McPeak K M 2019 Opt. Express 27 5097
[2] Gal J 2017 Nat. Chem. 9 604
[3] Koch K J, Gozzo F C, Nanita S C, Takats Z, Eberlin M N and Cooks R G 2002 Angew. Chem. Int. Ed. 41 1721
[4] Qiu X, Xie L, Liu X, Luo L, Zhang Z and Du J 2016 Opt. Lett. 41 4032
[5] Kneer L M, Roller E M, Besteiro L V, Schreiber R, Govorov A O and Liedl T 2019 ACS Nano 12 9110
[6] Ming Y, Sun S, Zhang Y, Xie D, Gao F and Hou Y 2019 Phys. Rev. B 100 125424
[7] Dai Z, Lee J and Zhang W 2012 Molecules 17 1247
[8] Kang L, Rodrigues S, Taghinejad M, Lan S, Lee K T, Liu Y, Werner D H, Urbas A and Cai W 2017 Nano Lett. 17 7102
[9] Ngamdee K and W N 2018 Sens. Actuators B Chem. 274 402
[10] Wang Z, Cheng F, Winsor T and Liu Y 2016 Nanotechnology 27 412001
[11] Basiri A, Chen X, Bai J, Amrollahi P, Carpenter J, Holman Z, Wang C and Yao Y 2019 Light Sci. Appl. 8 78
[12] Chen Y, Yang X and Gao J 2019 Light Sci. Appl. 8 45
[13] Liu S D, Liu J Y, Cao Z, Fan J L and Lei D 2020 Nanophotonics 9 3419
[14] Semnani B, Flannery J, Maruf R and Bajcsy M 2020 Light Sci. Appl. 9 23
[15] Schaaff T G and Whetten R L 2000 J. Phys. Chem. B 104 2630
[16] Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov A O and Gang O 2013 Nano Lett. 13 3145
[17] Slocik J M, Govorov A O and Naik R R 2011 Nano Lett. 11 701
[18] Renard D, Tian S, Lou M, Neumann O, Yang J, Bayles A, Solti D, Nordlander P and Halas N J 2021 Nano Lett. 21 536
[19] Gao W, Leung H M, Li Y, Chen H and Tam W Y 2011 J. Opt. 13 115101
[20] Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O and Valentine J 2015 Nat. Commun. 6 8379
[21] Tang B, Li Z, Palacios E, Liu Z, Butun S and Aydin K 2017 IEEE Photon. Technol. Lett. 29 295
[22] Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z and Govorov A O 2019 ACS Photon. 6 3241
[23] Afshinmanesh F, White J S, Cai W and Brongersma M L 2012 Nanophotonics 1 125
[24] Johnson P B and Christy R W J P R B 1972 Phys. Rev. B 6 4370
[25] Jing Z, Cai L, Bai W and Song G 2010 Opt. Lett. 35 3408
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[9] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[10] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[15] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
No Suggested Reading articles found!