Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058102    DOI: 10.1088/1674-1056/25/5/058102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First-principles study of the structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing various imperfections

Yan Zhang(张研)1, Li Duan(段理)1, Vincent Ji2, Ke-Wei Xu(徐可为)3
1. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
2. ICMMO/SP2M, UMR CNRS 8182, Université Paris-Sud, 91405 Orsay Cédex, France;
3. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing eight different imperfections of FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges, VFe, VRe, VO or VSr vacancies have been studied by using the first-principles projector augmented wave (PAW) within generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction (GGA+U). No obvious structural changes are observed for the imperfect Sr2FeReO6 containing FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges, or VSr vacancy defects. However, the six (eight) nearest oxygen neighbors of the vacancy move away from (close to) VFe or VRe (VO) vacancies. The half-metallic (HM) character is maintained for the imperfect Sr2FeReO6 containing FeRe or ReFe antisites, Fe1-Re4 interchange, VFe, VO or VSr vacancies, while it vanishes when the Fe1-Re1 interchange or VRe vacancy is presented. So the Fe1-Re1 interchange and the VRe vacancy defects should be avoided to preserve the HM character of Sr2FeReO6 and thus usage in spintronic devices. In the FeRe or ReFe antisites, Fe1-Re1 or Fe1-Re4 interchanges cases, the spin moments of the Fe (Re) cations situated on Re (Fe) antisites are in an antiferromagnetic coupling with those of the Fe(Re) cations on the regular sites. In the VFe, VRe, VO, or VSr vacancies cases, a ferromagnetic coupling is obtained within each cation sublattice, while the two cation sublattices are coupled antiferromagnetically. The total magnetic moments μtot ( μB/f.u.) of the imperfect Sr2FeReO6 containing eight different defects decrease in the sequence of VSr vacancy (3.50), VRe vacancy (3.43), FeRe antisite (2.74), VO vacancy (2.64), VFe vacancy (2.51), ReFe antisite (2.29), Fe1-Re4 interchange (1.96), Fe1-Re1 interchange (1.87), and the mechanisms of the saturation magnetization reduction have been analyzed.
Keywords:  double perovskite      imperfections      electronic properties      magnetic properties  
Received:  15 December 2015      Revised:  28 January 2016      Accepted manuscript online: 
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
  71.23.-k (Electronic structure of disordered solids)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51501017).
Corresponding Authors:  Yan Zhang     E-mail:  yan.zhang@chd.edu.cn

Cite this article: 

Yan Zhang(张研), Li Duan(段理), Vincent Ji, Ke-Wei Xu(徐可为) First-principles study of the structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing various imperfections 2016 Chin. Phys. B 25 058102

[1] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[2] Kobayashi K I, Kimura T, Tomioka Y, Sawada H, Terakura K and Tokura Y 1999 Phys. Rev. B 59 11159
[3] Rao C N R and Raveau B 1998 Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (Singapore: World Scientific Publishers)
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Tomioka Y, Okuda T, Okimoto Y, Kumai R, Kobayashi K I and Tokura Y 2000 Phys. Rev. B 61 422
[6] Chmaissem O, Kruk R, Dabrowski B, Brown D E, Xiong X, Kolesnik S, Jorgensen J D and Kimball C W 2000 Phys. Rev. B 62 14197
[7] Navarro J, Frontera C, Balcells L, Martínez B and Fontcuberta J 2001 Phys. Rev. B 64 092411
[8] Moreno M S, Gayone J E, Abbate M, Caneiro A, Niebieskikwiat D, Sánchez R D, Siervo A de, Landers R and Zampieri G 2002 Physica B 320 43
[9] Jung A, Ksenofontov V, Reiman S, Therese H A, Kolb U, Felser C and Tremel W 2006 Phys. Rev. B 73 144414
[10] Jung A, Bonn I, Ksenofontov V, Panthöfer M, Reiman S, Felser C and Tremel W 2007 Phys. Rev. B 75 184409
[11] Ohno K, Kato H, Nishioka T and Matsumura M 2007 J. Magn. Magn. Mater. 310 e666
[12] Hu Y C, Ge J J, Ji Q, Jiang Z S, Wu X S and Cheng G F 2010 Mater. Chem. Phys. 124 274
[13] Pan Y W, Zhu P W and Wang X 2015 Chin. Phys. B 24 017503
[14] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
[15] Moritomo Y, Xu Sh, Akimoto T, Machida A, Hamada N, Ohoyama K, Nishibori E, Takata M and Sakata M 2000 Phys. Rev. B 62 14224
[16] Fang Z, Terakura K and Kanamori J 2001 Phys. Rev. B 63 180407
[17] Wu H 2001 Phys. Rev. B 64 125126
[18] Solovyev I V 2002 Phys. Rev. B 65 144446
[19] Jeng H T and Guo G Y 2003 Phys. Rev. B 67 094438
[20] Saha-Dasgupta T and Sarma D D 2001 Phys. Rev. B 64 064408
[21] Ogale A S, Ogale S B, Ramesh R and Venkatesan T 1999 Appl. Phys. Lett. 75 537
[22] Ray S, Kumar A, Sarma D D, Cimino R, Turchini S, Zennaro S and Zema N 2001 Phys. Rev. Lett. 87 097204
[23] Munoz-García A B, Pavone M and Carter E A 2011 Chem. Mater. 23 4525
[24] Kircheisen R and Töpfer J 2012 J. Solid State Chem. 185 76
[25] Meneghini C, Ray S, Liscio F, Bardelli F, Mobilio S and Sarma D D 2009 Phys. Rev. Lett. 103 046403
[26] Balcells L, Navarro J, Bibes M, Roig A, Martinez B and Fontcuberta J 2001 Appl. Phys. Lett. 78 781
[27] Zhu X F, Li Q F and Chen L F 2007 Solid State Commun. 144 230
[28] Stoeffler D and Colis S 2005 J. Magn. Magn. Mater. 290-291 400
[29] Stoeffler D and Colis S 2006 Mater. Sci. Eng. B 126 133
[30] Stoeffler D and Etz C 2006 J. Phys.: Condens. Matter 18 11291
[31] Frontera C and Fontcuberta J 2004 Phys. Rev. B 69 014406
[32] Retuerto M, Martínez-Lope M J, García-Hernández M and Alonso J A 2009 Mater. Res. Bull. 44 1261
[33] Blanco J J, Insausti M, Lezama L, Chapman J P, Gil de Muro I and Rojo T 2004 J. Solid State Chem. 177 2749
[34] Blasco J, Rodríguez-Velamazán J A, Ritter C, Sesé J, Stankiewicz J and Herrero-Martín J 2009 Solid State Sci. 11 1535
[35] Li Q F, Zhu X F and Chen L F 2008 Phys. Lett. A 372 2911
[36] Li Q F, Wang L and Su J L 2011 Mod. Phys. Lett. B 25 2259
[37] Wang J, Zhang J M, Wang S F and Xu K W 2013 J. Magn. Magn. Mater. 329 30
[38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[39] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Saitoh T, Nakatake M, Kakizaki A, Nakajima H, Morimoto O, Xu Sh, Moritomo Y, Hamada N and Aiura Y 2002 Phys. Rev. B 66 035112
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Shannon R D 1976 Acta Cryst. A 32 751
[47] Zhang Y and Ji V 2012 Physica B 407 912
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[5] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[6] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[11] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[12] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[13] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[14] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[15] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
No Suggested Reading articles found!