Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034211    DOI: 10.1088/1674-1056/ac9047
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2

Wen-Jing Zhang(张雯婧)1,2, Qing-Song Liu(刘青松)1,2, Bo Cheng(程波)1,2, Ming-Hao Chao(晁明豪)1,2, Yun Xu(徐云)1,2, and Guo-Feng Song(宋国峰)1,2,†
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  As a two-dimensional (2D) material, monolayer MoS2 which limits its optical applications has a low absorption efficiency. In this paper, we propose a three-band perfect metamaterial absorber in the visible light range based on monolayer MoS2. The peak absorptivity of the structure at each resonance wavelength is nearly perfect, moreover, the light absorption of monolayer MoS2 is obviously enhanced at the three resonant wavelengths. The dielectric-dielectric-metal structure we designed produces the coupling of Fabry-Perot resonance and high-order diffraction guided-mode resonance at different absorption peaks, which has been proved by the slab waveguide theory. In addition, the multi-modal absorption phenomenon is explained by extracting the equivalent impedance. The results show that we can adjust the absorption peak wavelength by regulating the parameters of the structure. This structure not only provides an idea for enhancing the interaction between light and two-dimensional materials but also has potential applications for optical detection devices.
Keywords:  metamaterial      perfect absorber      monolayer MoS2      high-order diffraction  
Received:  21 June 2022      Revised:  21 August 2022      Accepted manuscript online:  08 September 2022
PACS:  42.79.Gn (Optical waveguides and couplers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43010000), the National Natural Science Foundation of China (Grant Nos. 61835011 and 12075244), Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the National Key Research and Development Program of China (Grant No. 2020YFB2206103).
Corresponding Authors:  Guo-Feng Song     E-mail:  sgf@semi.ac.cn

Cite this article: 

Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰) A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2 2023 Chin. Phys. B 32 034211

[1] Shalaev V M 2007 Nat. Photon. 1 41
[2] Zheludev N I and Kivshar Y S 2012 Nat. Mater. 11 917
[3] Liu Q S, Cheng B, Chao M H, Zhang W J, Xu Y and Song G F 2021 Ann. Phys. 533 2100255
[4] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[5] Bakir M, Karaaslan M, Unal E, Akgol O and Sabah C 2017 Opto-Electron. Rev. 25 318
[6] Gao Y X, Ren G B, Zhu B F, Huang L, Li H S, Yin B and Jian S S 2016 Plasmonics 11 291
[7] Ghaderi B, Nayyeri V, Soleimani M and Ramahi O M 2018 Sci. Rep. 8 13227
[8] Rosenberg J, Shenoi R V, Vandervelde T E, Krishna S and Painter O 2009 Appl. Phys. Lett. 95 161101
[9] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[10] Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L and Wen S C 2017 Opt. Lett. 42 3052
[11] Guan J R, Xia S X, Zhang Z Y, Wu J, Meng H Y, Yue J, Zhai X, Wang L L and Wen S C 2020 Nanoscale Res. Lett. 15 142
[12] Geim A K and Grigorieva I V 2013 Nature 499 419
[13] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[14] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766
[15] Zhang Y, Zhang X Z, Deng C Y, Ge Q, Huang J J, Lu J, Lin G X, Weng Z K, Zhang X A and Cai W W 2020 Chin. Phys. B 29 067403
[16] Mak K F and Shan J 2016 Nat. Photon. 10 216
[17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[18] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[19] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[20] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[21] Li H J, Qin M, Wang L L, Zhai X, Ren R Z and Hu J G 2017 Opt. Express 25 31612
[22] Lu H, Gan X T, Mao D, Fan Y C, Yang D X and Zhao J L 2017 Opt. Express 25 21630
[23] Long Y B, Deng H D, Xu H T, Shen L, Guo W B, Liu C Y, Huang W H, Peng W T, Li L X, Lin H J and Guo C 2017 Opt. Mater. Express 7 100
[24] Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohlidal I, Szeghalmi A, Kley E B and Tunnermann A 2016 Adv. Opt. Mater. 4 1780
[25] Priambodo P S, Maldonado T A and Magnusson R 2003 Appl. Phys. Lett. 83 3248
[26] Palik E D 1997 Handbook of Optical Constants of Solids (Burlington: Academic Press) pp. xvii-xviii
[27] Hsu C W, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J and Castellanos-Gomez A 2019 Adv. Opt. Mater. 7 1900239
[28] Qing Y M, Ma H F, Yu S and Cui T J 2019 J. Appl. Phys. 125 213108
[29] Jackson J D 2003 Classical Electrodynamics (New York: Wiley) p. 1
[30] Mei P, Zhang S, Lin X Q and Pedersen G F 2019 IEEE Antennas Wirel. Propag. Lett. 18 521
[31] Wu J, Liu X Y and Huang Z 2021 Chin. Phys. B 30 014202
[32] Bhattarai K, Silva S, Song K, Urbas A, Lee S J, Ku Z and Zhou J F 2017 Sci. Rep. 7 10569
[33] Qiu C Y, Wu J H, Zhu R R, Shen L and Zheng B 2019 Opt. Commun. 451 226
[34] Massiot I, Colin C, Sauvan C, Lalanne P, Cabarrocas P R I, Pelouard J L and Collin S 2013 Opt. Express 21 A372
[35] Nie J Q, Yu J C, Liu W X, Yu T B and Gao P Q 2020 Opt. Express 28 38592
[36] Wang J P, Jin Y X, Ma J Y, Shao J D and Fan Z X 2010 Chin. Phys. B 19 054202
[37] Sang T, Yin X, Qi H L, Gao J, Niu X S and Jiao H F 2020 IEEE Photon. J. 12 4500111
[38] Wang S S and Magnusson R 1995 Appl. Optics 34 2414
[39] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415
[40] You S P, He Y, Yang Y F and Zhang H F 2017 Chin. Phys. B 26 030301
[41] Piper J R and Fan S 2014 ACS Photon. 1 347
[1] Nonlinear wave propagation in acoustic metamaterialswith bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[6] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[12] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[13] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!