ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2 |
Wen-Jing Zhang(张雯婧)1,2, Qing-Song Liu(刘青松)1,2, Bo Cheng(程波)1,2, Ming-Hao Chao(晁明豪)1,2, Yun Xu(徐云)1,2, and Guo-Feng Song(宋国峰)1,2,† |
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract As a two-dimensional (2D) material, monolayer MoS2 which limits its optical applications has a low absorption efficiency. In this paper, we propose a three-band perfect metamaterial absorber in the visible light range based on monolayer MoS2. The peak absorptivity of the structure at each resonance wavelength is nearly perfect, moreover, the light absorption of monolayer MoS2 is obviously enhanced at the three resonant wavelengths. The dielectric-dielectric-metal structure we designed produces the coupling of Fabry-Perot resonance and high-order diffraction guided-mode resonance at different absorption peaks, which has been proved by the slab waveguide theory. In addition, the multi-modal absorption phenomenon is explained by extracting the equivalent impedance. The results show that we can adjust the absorption peak wavelength by regulating the parameters of the structure. This structure not only provides an idea for enhancing the interaction between light and two-dimensional materials but also has potential applications for optical detection devices.
|
Received: 21 June 2022
Revised: 21 August 2022
Accepted manuscript online: 08 September 2022
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
02.70.Bf
|
(Finite-difference methods)
|
|
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43010000), the National Natural Science Foundation of China (Grant Nos. 61835011 and 12075244), Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the National Key Research and Development Program of China (Grant No. 2020YFB2206103). |
Corresponding Authors:
Guo-Feng Song
E-mail: sgf@semi.ac.cn
|
Cite this article:
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰) A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2 2023 Chin. Phys. B 32 034211
|
[1] Shalaev V M 2007 Nat. Photon. 1 41 [2] Zheludev N I and Kivshar Y S 2012 Nat. Mater. 11 917 [3] Liu Q S, Cheng B, Chao M H, Zhang W J, Xu Y and Song G F 2021 Ann. Phys. 533 2100255 [4] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 [5] Bakir M, Karaaslan M, Unal E, Akgol O and Sabah C 2017 Opto-Electron. Rev. 25 318 [6] Gao Y X, Ren G B, Zhu B F, Huang L, Li H S, Yin B and Jian S S 2016 Plasmonics 11 291 [7] Ghaderi B, Nayyeri V, Soleimani M and Ramahi O M 2018 Sci. Rep. 8 13227 [8] Rosenberg J, Shenoi R V, Vandervelde T E, Krishna S and Painter O 2009 Appl. Phys. Lett. 95 161101 [9] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [10] Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L and Wen S C 2017 Opt. Lett. 42 3052 [11] Guan J R, Xia S X, Zhang Z Y, Wu J, Meng H Y, Yue J, Zhai X, Wang L L and Wen S C 2020 Nanoscale Res. Lett. 15 142 [12] Geim A K and Grigorieva I V 2013 Nature 499 419 [13] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780 [14] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766 [15] Zhang Y, Zhang X Z, Deng C Y, Ge Q, Huang J J, Lu J, Lin G X, Weng Z K, Zhang X A and Cai W W 2020 Chin. Phys. B 29 067403 [16] Mak K F and Shan J 2016 Nat. Photon. 10 216 [17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [18] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [19] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497 [20] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664 [21] Li H J, Qin M, Wang L L, Zhai X, Ren R Z and Hu J G 2017 Opt. Express 25 31612 [22] Lu H, Gan X T, Mao D, Fan Y C, Yang D X and Zhao J L 2017 Opt. Express 25 21630 [23] Long Y B, Deng H D, Xu H T, Shen L, Guo W B, Liu C Y, Huang W H, Peng W T, Li L X, Lin H J and Guo C 2017 Opt. Mater. Express 7 100 [24] Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohlidal I, Szeghalmi A, Kley E B and Tunnermann A 2016 Adv. Opt. Mater. 4 1780 [25] Priambodo P S, Maldonado T A and Magnusson R 2003 Appl. Phys. Lett. 83 3248 [26] Palik E D 1997 Handbook of Optical Constants of Solids (Burlington: Academic Press) pp. xvii-xviii [27] Hsu C W, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J and Castellanos-Gomez A 2019 Adv. Opt. Mater. 7 1900239 [28] Qing Y M, Ma H F, Yu S and Cui T J 2019 J. Appl. Phys. 125 213108 [29] Jackson J D 2003 Classical Electrodynamics (New York: Wiley) p. 1 [30] Mei P, Zhang S, Lin X Q and Pedersen G F 2019 IEEE Antennas Wirel. Propag. Lett. 18 521 [31] Wu J, Liu X Y and Huang Z 2021 Chin. Phys. B 30 014202 [32] Bhattarai K, Silva S, Song K, Urbas A, Lee S J, Ku Z and Zhou J F 2017 Sci. Rep. 7 10569 [33] Qiu C Y, Wu J H, Zhu R R, Shen L and Zheng B 2019 Opt. Commun. 451 226 [34] Massiot I, Colin C, Sauvan C, Lalanne P, Cabarrocas P R I, Pelouard J L and Collin S 2013 Opt. Express 21 A372 [35] Nie J Q, Yu J C, Liu W X, Yu T B and Gao P Q 2020 Opt. Express 28 38592 [36] Wang J P, Jin Y X, Ma J Y, Shao J D and Fan Z X 2010 Chin. Phys. B 19 054202 [37] Sang T, Yin X, Qi H L, Gao J, Niu X S and Jiao H F 2020 IEEE Photon. J. 12 4500111 [38] Wang S S and Magnusson R 1995 Appl. Optics 34 2414 [39] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415 [40] You S P, He Y, Yang Y F and Zhang H F 2017 Chin. Phys. B 26 030301 [41] Piper J R and Fan S 2014 ACS Photon. 1 347 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|