Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064301    DOI: 10.1088/1674-1056/ac4907
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband low-frequency acoustic absorber based on metaporous composite

Jia-Hao Xu(徐家豪)1, Xing-Feng Zhu(朱兴凤)1,2,†, Di-Chao Chen(陈帝超)1, Qi Wei(魏琦)1, and Da-Jian Wu(吴大建)1,‡
1 Jiangsu Key Laboratory on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  Broadband absorption of low-frequency sound waves via a deep subwavelength structure is of great and ongoing interest in research and engineering. Here, we numerically and experimentally present a design of a broadband low-frequency absorber based on an acoustic metaporous composite (AMC). The AMC absorber is constructed by embedding a single metamaterial resonator into a porous layer. The finite element simulations show that a high absorption (absorptance A>0.8) can be achieved within a broad frequency range (from 290 Hz to 1074 Hz), while the thickness of AMC is 1/13 of the corresponding wavelength at 290 Hz. The broadband and high-efficiency performances of the absorber are attributed to the coupling between the two resonant absorptions and the trapped mode. The numerical simulations and experimental results are obtained to be in good agreement with each other. Moreover, the high broadband absorption can be maintained under random incident acoustic waves. The proposed absorber provides potential applications in low-frequency noise reduction especially when limited space is demanded.
Keywords:  acoustic metamaterial      low-frequency acoustic absorber      broadband      metaporous  
Received:  13 October 2021      Revised:  18 December 2021      Accepted manuscript online:  07 January 2022
PACS:  43.28.+h (Aeroacoustics and atmospheric sound)  
  43.50.+y (Noise: its effects and control)  
  43.90.+v (Other topics in acoustics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174197, 11874222, and 12027808).
Corresponding Authors:  Xing-Feng Zhu, Da-Jian Wu     E-mail:  zhuxingfeng@njnu.edu.cn;wudajian@njnu.edu.cn

Cite this article: 

Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建) Broadband low-frequency acoustic absorber based on metaporous composite 2022 Chin. Phys. B 31 064301

[1] Ma G C and Sheng P 2016 Sci. Adv. 2 e1501595
[2] Allard J F and Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (United Kingdom: John Wiley & Sons Ltd.)
[3] Meng H, Ao Q B, Ren S W, Xin F X, Tang H P and Lu T J 2015 Compos. Sci. Technol. 107 10
[4] Cox T and D'Antonio P 2016 Acoustic Absorbers and Diffusers: Theory, Design and Application, 3rd edn. (Boca Raton: CRC Press)
[5] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Nat. Mater. 13 873
[6] Yang M, Meng C, Fu C X, Li Y, Yang Z Y and Sheng P 2015 Appl. Phys. Lett. 107 104104
[7] He Z H, Zhao J B, Yao H and Chen X 2019 Acta Phys. Sin. 68 214302 (in Chinese)
[8] Chen H J, Zhao W X and Hao C C 2015 Chin. J. Liq. Cryst. Disp. 30 234
[9] Gao D B, Liu X J, Tian Z F, Zhou Z M, Zeng X W and Han K F 2017 Acta Phys. Sin. 66 014307 (in Chinese)
[10] Huang S, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2019 J. Acoust. Soc. Am. 145 254
[11] Tang Y F, Xin F X, Huang L X and Lu T J 2017 Europhy. Lett. 118 44002
[12] Jimenez N, Huang W, Romero-García V, Pagneux V and Groby J P 2016 Appl. Phys. Lett. 109 121902
[13] Zhang C and Hu X H 2016 Phys. Rev. Appl. 6 064025
[14] Yang M, Chen S Y, Fu C X and Sheng P 2017 Mater. Horiz. 4 673
[15] Shen Y C, Yang Y Y, Guo X S, Shen Y and Zhang D 2019 Appl. Phys. Lett. 114 083501
[16] Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502
[17] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2018 Appl. Phys. Lett. 113 233501
[18] Donda K, Zhu Y F, Fan S W, Cao L Y, Li Y and Assouar B 2019 Appl. Phys. Lett. 115 173506
[19] Zhai S L, Wang Y B and Zhao X P 2019 Acta Phys. Sin. 68 034301 (in Chinese)
[20] Wu X X, Fu C X, Li X, Meng Y, Gao Y B, Tian J X, Wang L, Huang Y Z, Yang Z Y and Wen W J 2016 Appl. Phys. Lett. 109 043501
[21] Gao N S, Hou H, Zhang Y N and Wu J H 2018 Mod. Phys. Lett. B 32 1850040
[22] Wu P, Mu Q J, Wu X X, Wang L, Li X, Zhou Y Q, Wang S X, Huang Y Z and Wen W J 2019 Phys. Lett. A 383 2361
[23] Xu Z X, Meng H Y, Chen A, Yang J, Liang B and Cheng J C 2021 J. Appl. Phys. 129 094502
[24] Groby J P, Duclos A, Dazel O, Boeckx L and Lauriks W 2011 J. Acoust. Soc. Am. 129 3035
[25] Groby J P, Dazel O, Duclos A, Boeckx L and Kelders L 2011 J. Acoust. Soc. Am. 130 3771
[26] Lagarrigue C, Groby J P, Tournat V, Dazel O and Umnova O 2013 J. Acoust. Soc. Am. 134 4670
[27] Groby J P, Lagarrigue C, Brouard B, Dazel O, Tournat V and Nennig B 2014 J. Acoust. Soc. Am. 136 1139
[28] Groby J P, Lagarrigue C, Brouard B, Dazel O, Tournat V and Nennig B 2015 J. Acoust. Soc. Am. 137 273
[29] Long H Y, Cheng Y, Tao J C and Liu X J 2017 Appl. Phys. Lett. 110 023502
[30] Zhou Y K, Li D T, Li Y and Hao T 2019 Appl. Phys. Lett. 115 093503
[31] Zhu X F, Lau S K, Lu Z B and Jeon W 2019 J. Sound Vib. 461 114922
[32] Liu C R, Wu J H, Ma F Y, Chen X and Yang Z R 2019 Appl. Phys. Express 12 084002
[33] Long H Y, Shao C, Liu C, Cheng Y and Liu X J 2019 Appl. Phys. Lett. 115 103503
[34] Liu C R, Wu J H, Chen X and Ma F Y 2019 J. Phys. D: Appl. Phys. 52 105302
[35] Liu C R, Wu J H, Yang Z Y and Ma F Y 2020 Compos. Struct. 246 112366
[36] Wu L, Liu X W, Xiong X Z, Pang J X and Zhang H W 2021 Software Guide 20 94
[37] Wu L, Zhang W J, Zhang B and Xiong X Z 2021 Software Guide 20 82
[38] Chung J Y and Blaser D A 1980 J. Acoust. Soc. Am. 68 907
[39] Kuttruff H 2009 Room Acoustics, fifth edn. (London and New York: Spon Press) pp. 52-55
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[6] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[7] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[8] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[9] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[10] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[11] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[12] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[13] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[14] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[15] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
No Suggested Reading articles found!