Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064303    DOI: 10.1088/1674-1056/ac48fc

Collision enhanced hyper-damping in nonlinear elastic metamaterial

Miao Yu(于淼)1, Xin Fang(方鑫)1,2,†, Dianlong Yu(郁殿龙)1, Jihong Wen(温激鸿)1, and Li Cheng(成利)2
1 Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;
2 Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
Abstract  Nonlinear elastic metamaterial, a topic which has attracted extensive attention in recent years, can enable broadband vibration reduction under relatively large amplitude. The combination of damping and strong nonlinearity in metamaterials may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction. However, there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this concept. To tackle this problem, this paper numerically demonstrates that the nonlinear elastic metamaterials, consisting of sandwich damping layers and collision resonators, can generate very robust hyper-damping effect, conducive to efficient and broadband vibration suppression. The collision-enhanced hyper damping is persistently presented in a large parameter space, ranging from small to large amplitudes, and for small and large damping coefficients. The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials. We report the design concept, properties and mechanisms of the hyper-damping and its effect on vibration transmission. This paper reveals new properties offered by nonlinear elastic metamaterials, and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.
Keywords:  nonlinear elastic metamaterial      hyper-damping      vibration suppression  
Received:  01 October 2021      Revised:  29 December 2021      Accepted manuscript online:  29 December 2021
PACS:  43.40.+s (Structural acoustics and vibration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872371, 11991032, and 12002371) and the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4022).
Corresponding Authors:  Xin Fang     E-mail:

Cite this article: 

Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利) Collision enhanced hyper-damping in nonlinear elastic metamaterial 2022 Chin. Phys. B 31 064303

[1] Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2000 Science 289 1734
[2] Ma G and Sheng P 2016 Sci. Adv. 2 e1501595
[3] Liu J, Guo H and Wang T 2020 Crystals 10 305
[4] Kumar S and Lee H P 2020 Crystals 10 686
[5] Choi C, Bansal S, Münzenrieder N and Subramanian S 2021 Adv. Eng. Mater. 23 2000988
[6] Hussein M I, Leamy M J and Ruzzene M 2014 Appl. Mech. Rev. 66 4
[7] Yang C and Cheng L 2016 J. Acoust. Soc. Am. 139 2361
[8] Sugino C, Leadenham S, Ruzzene M and Erturk A 2016 J. Appl. Phys. 120 134501
[9] Celli P, Yousefzadeh B, Daraio C and Gonella S 2019 Appl. Phys. Lett. 114 091903
[10] Yan Z Y and Wu J H 2017 J. Phys. D Appl. Phys. 50 355104
[11] Miniaci Mz Mazzotti M, Amendola A and Fraternali F 2021 Int. J. Solids. Struct. 216 156
[12] Madhamshetty K and Manimala J M 2019 J. Franklin. Inst. 356 7731
[13] Zhou J, Dou L, Wang K, Xu D and Ouyang H 2019 Nonlinear Dyn. 96 647
[14] Al Ba'ba'a H, DePauw D, Singh T and Nouh M 2018 J. Appl. Phys. 123 105106
[15] Chen Y Y, Barnhart M V, Chen J K, Hu G K, Sun C T and Huang G L 2016 Compos. Struct. 136 358
[16] DePauw D, Al Ba'ba'a H and Nouh M 2018 Extreme. Mech. Lett. 18 36
[17] Aladwani A and Nouh M 2010 Int. J. Mech. Sci. 173 105459
[18] Hussein M I and Frazier M J 2013 J. Sound Vib. 332 4767
[19] Bacquet C L, Al Ba'ba'a H, Frazier M J, Nouh M and Hussein M I 2018 Adv. Appl. Mech. 51 115
[20] Frazier M J and Hussein M I 2012 Proc. SPIE 8348 56
[21] Mohammad, Bukhari and Oumar 2020 Nonlinear Dyn. 99 1539
[22] Manimala J M, Kulkarni P P and Madhamshetty K 2018 Adv. Compos. Hybrid. Mater. 1 797
[23] Silva P B, Leamy M J, Geers M G D and Kouznetsova V G 2019 Phys. Rev. E 99 063003
[24] Zega V, Silva P B, Geers M G D and Kouznetsova V G 2020 Sci. Rep. 10 12041
[25] Pajunen K, Celli P and Daraio C 2021 Extreme. Mech. Lett. 44 101236
[26] Emerson T A and Manimala J M 2020 Acta Mech. 231 4665
[27] Konarski S G, Haberman M R and Hamilton M F 2018 J. Acoust. Soc. Am. 144 3022
[28] Valappil S V, Sheehan C and Manimala J M 2018 Proc. ASME Conf. Smart. Mater. Adapt. Struct. Intell. Syst. 2018 7932
[29] Liu X, Cai G and Wang K W 2021 J. Appl. Phys. 129 114902
[30] Goldsberry B M and Haberman M R 2018 J. Appl. Phys. 123 091711
[31] Fang X, Wen J, Yin J, Yu D and Xiao Y 2017 New J. Phys. 19 053007
[32] Fang X, Wen J, Yin J, Yu D and Xiao Y 2016 Phys. Rev. E 94 052206
[33] Fang X, Wen J, Bonello B, Yin J and Yu D Y 2017 Nat. Commun. 8 1
[34] Fang X, Wen J, Yu D and Yin J 2018 Phys. Rev. Appl. 10 054049
[35] Fang X, Wen J, Benisty H and Yu D 2020 Phys. Rev. B 101 104304
[36] Fang X, Wen J, Yu D and Yin J 2018 New J. Phys. 20 123028
[37] Sheng P, Fang X, Wen J and Yu D 2021 J. Sound Vib. 492 115739
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[3] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[4] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[5] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[6] Using Helmholtz resonator arrays to improve dipole transmission efficiency in waveguide
Liwei Wang(王力维), Li Quan(全力), Feng Qian(钱枫), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(9): 094301.
[7] A novel multi-cavity Helmholtz muffler
Han-Bo Shao(邵瀚波), Huan He(何欢), Yan Chen(陈岩), Guo-Ping Chen(陈国平). Chin. Phys. B, 2019, 28(5): 054303.
[8] Radiation from finite cylindrical shell with irregular-shaped acoustic enclosure
De-Sen Yang(杨德森), Rui Zhang(张睿), Sheng-Guo Shi(时胜国). Chin. Phys. B, 2018, 27(10): 104301.
[9] Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators
Dian-Long Yu(郁殿龙), Hui-Jie Shen(沈惠杰), Jiang-Wei Liu(刘江伟), Jian-Fei Yin(尹剑飞), Zhen-Fang Zhang(张振方), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(6): 064301.
[10] Wave propagation in beams with anti-symmetric piezoelectric shunting arrays
Sheng-Bing Chen(陈圣兵), Gang Wang(王刚). Chin. Phys. B, 2016, 25(3): 034301.
[11] Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping
Yuan Li-Yun (袁丽芸), Xiang Yu (向宇), Lu Jing (陆静), Jiang Hong-Hua (蒋红华). Chin. Phys. B, 2015, 24(12): 124301.
[12] Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection
Wang Chi (王驰), Zhou Yu-Qiu (周瑜秋), Shen Gao-Wei (沈高炜), Wu Wen-Wen (吴文雯), Ding Wei (丁卫). Chin. Phys. B, 2013, 22(12): 124601.
[13] Oblique incidence properties of locally resonant sonic materials with resonance and Bragg scattering effects
Yuan Bo (袁博), Wen Ji-Hong (温激鸿), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(7): 074302.
[14] Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners
Zhang Hui (张辉), Zhang Shu-Yi (张淑仪), Fan Li (范理). Chin. Phys. B, 2012, 21(8): 083302.
No Suggested Reading articles found!