Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068702    DOI: 10.1088/1674-1056/ac4f56
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes

Yuting Zhang(张玉婷)1, Songyi Liu(刘嵩义)1, Wei Huang(黄巍)1,†, Erxiang Dong(董尔翔)1, Hongyang Li(李洪阳)1, Xintong Shi(石欣桐)1, Meng Liu(刘蒙)2, Wentao Zhang(张文涛)1, Shan Yin(银珊)1, and Zhongyue Luo(罗中岳)1
1 Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  We numerically demonstrate a photo-excited plasmon-induced transparency (PIT) effect in hybrid terahertz (THz) metamaterials. The proposed metamaterials are regular arrays of hybrid unit cells composed of a metallic cut wire and four metallic split-ring resonators (SRRs) whose gaps are filled with photosensitive semiconductor gallium arsenide (GaAs) patches. We simulate the PIT effect controlled by external infrared light intensity to change the conductivity of GaAs. In the absence of photo excitation, the conductivity of GaAs is 0, thus the SRR gaps are disconnected, and the PIT effect is not observed since the dark resonator (supported by the hybrid SRRs) cannot be stimulated. When the conductivity of GaAs is increased via photo excitation, the conductivity of GaAs can increase rapidly from 0 S/m to 1×106 S/m and GaAs can connect the metal aluminum SRR gaps, and the dark resonator is excited through coupling with the bright resonator (supported by the cut wire), which leads to the PIT effect. Therefore, the PIT effect can be dynamically tuned between the on and off states by controlling the intensity of the external infrared light. We also discuss couplings between one bright mode (CW) and several dark modes (SRRs) with different sizes. The interference analytically described by the coupled Lorentz oscillator model elucidates the coupling mechanism between one bright mode and two dark modes. The phenomenon can be considered the result of linear superposition of the coupling between the bright mode and each dark mode. The proposed metamaterials are promising for application in the fields of THz communications, optical storage, optical display, and imaging.
Keywords:  metamaterial      plasmon induced transparency      photo-excited      terahertz  
Received:  17 December 2021      Revised:  17 January 2022      Accepted manuscript online:  27 January 2022
PACS:  87.50.U-  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Science and Technology Major Project (Grant No. 2017ZX02101007-003), the National Natural Science Foundation of China (Grant No. 61965005), the Natural Science Foundation of Guangxi Province (Grant No. 2019GXNSFDA185010), Guangxi Distinguished Expert Project, Foundation of Guangxi Key Laboratory of Optoelectronic Information Processing (Grant No. GD20104), the National Natural Science Foundation of China (Grant No. 62105187), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF010), and the Innovation Project of Guang Xi Graduate Education (Grant No. YCSW2020158).
Corresponding Authors:  Wei Huang     E-mail:  weihuang@guet.edu.cn

Cite this article: 

Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳) Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes 2022 Chin. Phys. B 31 068702

[1] Marangos J P 1998 Journal of Modern Optics 45 471
[2] Siegel P H 2002 IEEE Transactions on microwave theory and techniques 50 910
[3] Siegel P H 2004 IEEE Transactions on Microwave Theory and Techniques 52 2438
[4] Kawase K, Shikata J and Ito H 2002 J. Phys. D: Appl. Phys. 35 R1
[5] Manjappa M and Singh R 2020 Adv. Opt. Mater. 8 1901984
[6] Huang W, Qu X W and Yin S 2020 IEEE Journal of Selected Topics in Quantum Electronics 27 8400107
[7] Huang W, Liang S J and Kyoseva E 2018 Carbon 127 187
[8] Huang W, Yin S and Zhang W 2019 New J. Phys. 21 113004
[9] Peng J, He X and Shi C 2020 Physica E 124 114309
[10] He X Y, Liu F and Lin F T 2021 J. Phys. D: Appl. Phys. 54 235103
[11] Li J S and Chen X S 2020 Chin. Phys. B 29 078703
[12] Dimova E, Huang W and Popkirov G 2016 Opt. Commun. 366 382
[13] Huang W, Hao X Y and Cheng Y 2021 J. Lightwave Technol. 39 7925
[14] Chen X Y, Tian Z and Li Q 2020 Chin. Phys. B 29 077803
[15] Wu C H, Khanikaev A B and Shvets G 2011 Phys. Rev. Lett. 106 107403
[16] Luk'yanchuk B, Zheludev N I and Maier S A 2010 Nat. Mater. 9 707
[17] Zhang L, Tassin P and Koschny T 2010 Appl. Phys. Lett. 97 241904
[18] Zhang J J, Xiao S S and Jeppesen C 2010 Opt. Express 18 17187
[19] Yin S, Hu F R and Chen X Y 2019 J. Opt. 21 025101
[20] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[21] Yin S, Lu X C and Xu N N 2015 Scientific Reports 5 16440
[22] Guo L, Ma J and Chen S 2018 Plasmonics 13 1941
[23] Liu X J, Gu J Q and Singh R 2012 Appl. Phys. Lett. 100 131101
[24] Li Z Y, Ma Y F and Huang R 2011 Opt. Express 19 8912
[25] Gu J, Singh R and Liu X 2012 Nat. Commun. 3 1151
[26] Bai Q, Liu C and Chen J 2010 J. Appl. Phys. 107 093104
[27] Thuy V T T, Tung N T and Park J W 2010 J. Opt. 12 115102
[28] Fan Z F, Tian Z Y and Wan W J 2017 Acta Phys. Sin. 66 087801 (in Chinese)
[29] Li G S, Yan F P and Wang W 2019 Chin. J. Lasers 46 0114002
[30] Meng Q L, Zhang Y and Zhong Z Q 2018 J. Modern Opt. 65 2086
[31] Azad A K, Dai J M and Zhang W L 2006 Opt. Lett. 31 634
[32] Chen X Y, Ghosh S and Xu Q 2018 Appl. Phys. Lett. 113 061111
[33] Shen X and Cui T J 2012 J. Opt. 14 11
[34] Wang G C, Zhang J N and Zhang B 2016 Opt. Commun. 374 64
[35] Liu J X, Jin K L and He X Y 2019 Appl. Phys. Express 12 075010
[36] Huang W, Liu S Y and Cheng Y 2021 New J. Phys. 23 093017
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[12] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[15] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
No Suggested Reading articles found!