CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles modeling hydrogenation of bilayered boron nitride |
Jing Wang(王静), Peng Zhang(张鹏), Xiang-Mei Duan(段香梅) |
Department of Physics, Faculty of Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract We have investigated the structural and electronic characteristics of hydrogenated boron-nitride bilayer (H-BNBN-H) using first-principles calculations. The results show that hydrogenation can significantly reduce the energy gap of the BN-BN into the visible-light region. Interestingly, the electric field induced by the interface dipoles helps to promote the formation of well-separated electron-hole pairs, as demonstrated by the charge distribution of the VBM and CBM. Moreover, the applied bias voltage on the vertical direction of the bilayer could modulate the band gap, resulting in transition from semiconductor to metal. We conclude that H-BNBN-H could improve the solar energy conversion efficiency, which may provide a new way for tuning the electronic devices to meet different environments and demands.
|
Received: 11 January 2016
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574167). |
Corresponding Authors:
Xiang-Mei Duan
E-mail: duanxiangmei@nbu.edu.cn
|
Cite this article:
Jing Wang(王静), Peng Zhang(张鹏), Xiang-Mei Duan(段香梅) First-principles modeling hydrogenation of bilayered boron nitride 2016 Chin. Phys. B 25 057301
|
[1] |
Fujishima A and Honda K 1972 Nature 238 37
|
[2] |
Maeda K and Domen K 2010 J. Phys. Chem. Lett. 1 2655
|
[3] |
Chen X B, Shen S H, Guo L J and Mao S S 2010 Chem. Rev. 110 6503
|
[4] |
Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
|
[5] |
Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
|
[6] |
Gai Y Q, Li J B, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
|
[7] |
Yin W J, Wei S H, Al-Jassim M M and Yan Y F 2011 Phys. Rev. Lett. 106 066801
|
[8] |
Mete E, Uner D, Gülseren O, and Ellialtıoğlu Ş 2009 Phys. Rev. B 79 125418
|
[9] |
Kudo A and Miseki Y 2009 Chem. Soc. Rev. 38 253
|
[10] |
Ma X G, Lv Y H, Xu J, Liu Y F, Zhang R Q and Zhu Y F 2012 J. Phys. Chem. C 116 23485
|
[11] |
Wu F, Liu Y F, Yu G X, Shen D F, Wang Y L and Kan E J 2012 J. Phys. Chem. C 3 3330
|
[12] |
Li X R, Dai Y, Ma Y D, Han S H and Huang B B 2014 Phys. Chem. Chem. Phys. 16 4230
|
[13] |
Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R and Smith S C 2012 J. Am. Chem. Soc. 134 4393
|
[14] |
Du A J, Ng Y H, Bell N J, Zhu Z H, Amal R and Smith S C 2011 J. Phys. Chem. Lett. 2 894
|
[15] |
Gao H T, Li X H, Lv J and Liu G J 2013 J. Phys. Chem. C 117 16022
|
[16] |
Wang J J, Guan Z Y, Huang J, Li Q X and Yang J L 2014 J. Mater. Chem. A 2 7960
|
[17] |
Li X X, Li Z Y and Yang J L 2014 Phys. Rev. Lett. 112 018301
|
[18] |
Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
|
[19] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[20] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[21] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[22] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[23] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 12 5188
|
[24] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[25] |
Zhong X L, Yap Y K, Pandey R and Karna S P 2011 Phys. Rev. B 83 193403
|
[26] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[27] |
Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
|
[28] |
Li X X, Zhao J and Yang J L 2013 Scientific Reports 3 1858
|
[29] |
Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter. 21 084204
|
[30] |
Zhang R Q, Liu X M, Wen Z and Jiang Q 2011 J. Phys. Chem. C 115 3425
|
[31] |
Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
|
[32] |
Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
|
[33] |
Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 81 2312
|
[34] |
Benedict L X, Shirley E L and Bohn R B 1998 Phys. Rev. Lett. 80 4514
|
[35] |
Albrecht S and Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510
|
[36] |
Cao T F, Zheng X H, Huang L F, Gong P L and Zeng Z 2014 J. Phys. Chem. C 118 10472
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|