1. College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow university, Suzhou 215006, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
We present an infrared spectroscopy study of charge dynamics in CaCo2As2 single crystal. In this material, the optical conductivity can be described by two Drude components with different scattering rates (1/τ): a broad incoherent background and a narrow Drude component. By monitoring the temperature dependence, we find that only the narrow Drude component is temperature-dependent and determines the transport properties. Especially a Fermi liquid behavior of carriers is revealed by the T2 behavior in the dc resistivity ρn and scattering rate 1/τn, indicating a coherent nature of quasiparticles in the narrow Drude subsystem.
Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821400, 2012CB921302, and 2015CB921303) and the National Natural Science Foundation of China (Grants Nos. 11274237, 91121004, 51228201, and 11004238). Wei Zhang also thanks the support of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Wei Zhang(张威), Bing Xu(许兵), Run Yang(杨润), Jin-Yun Liu(刘金云), Hao Yang(杨浩), Xiang-Gang Qiu(邱祥冈) Optical study of charge dynamics in CaCo2As2 2016 Chin. Phys. B 25 057201
[1]
Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 214515
[2]
Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[3]
Doiron-Leyraud N, Auban-Senzier P, René de Cotret S, Bourbonnais C, Jérome D, Bechgaard K and Taillefer L 2009 Phys. Rev. B 80 214531
[4]
Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tokeya H, Hirata K, Terashima T and Matsuda Y 2010 Phys. Rev. B 81 184519
[5]
Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H 2015 Phys. Rev. X 5 031035
[6]
Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001
[7]
Malaeb W, Yoshida T, Fujimori A, Kubota M, Ono K, Kihou K, Shirage P M, Kito H, Iyo A, Eisaki H, Nakajima Y, Tamegai T and Arita R 2009 JPSJ 78 123706
[8]
Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81
[9]
Yin Z P, Haule K and Kotliar G 2011 Nat. Mater. 10 932
[10]
Misawa T, Nakamura K and Imada M 2012 Phys. Rev. Lett. 108 177007
[11]
Mazin I I 2010 Nature 464 183
[12]
Johnston D C 2010 Adv. Phys. 59 803
[13]
Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R and Matsuda Y 2012 Science 336 1554
[14]
Walmsley P, Putzke C, Malone L, Guillamón I, Vignolles D, Proust C, Badoux S, Coldea A I, Watson M D, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y and Carrington A 2013 Phys. Rev. Lett. 110 257002
[15]
Wu D, Barisic N, Kallina P, Faridian A, Gorshunov B, Drichko N, Li L J, Lin X, Cao G H, Xu Z A, Wang N L and Dressel M 2010 Phys. Rev. B 81 100512
[16]
Tu J J, Li J, Liu W, Punnoose A, Gong Y, Ren Y H, Li L J, Cao G H, Xu Z A and Homes C C 2010 Phys. Rev. B 82 174509
[17]
Nakajima M, Ishida S, Kihou K, Tomioka Y, Ito T, Yoshida Y, Lee C H, Kito H, Iyo A, Eisaki H, Kojima K M and Uchida S 2010 Phys. Rev. B 81 104528
[18]
Dai Y M, Xu B, Shen B, Xiao H, Wen H H, Qiu X G, Homes C C and Lobo R P S M 2013 Phys. Rev. Lett. 111 117001
[19]
Yang Y X, Xiong R, Fang Z H, Xu B, Xiao H, Qiu X G, Shi J and Wang K 2014 Chin. Phys. B 23 107401
[20]
Zhang W, Nadeem K, Xiao H, Yang R, Xu B, Yang H and Qiu X G 2015 Phys. Rev. B 92 144416
[21]
Homes C C, Reedyk M, Cradles D A and Timusk T 1993 Appl. Opt. 32 2976
[22]
Akrap A, Tu J J, Li L J, Cao G H, Xu Z A and Homes C C 2009 Phys. Rev. B 80 180502
[23]
Schafgans A A, Pursley B C, LaForge A D, Sefat A S, Mandrus D and Basov D N 2011 Phys. Rev. B 84 052501
[24]
Dai Y M, Xu B, Shen B, Xiao H, Lobo R P S M and Qiu X G 2012 Chin. Phys. B 21 077403
[25]
Xu B, Dai Y M, Shen B, Xiao H, Ye Z R, Forget A, Colson D, Feng D L, Wen H H, Homes C C, Qiu X G and Lobo R P S M 2015 Phys. Rev. B 92 104510
[26]
Sekiba Y, Sato T, Nakayama K, Terashima K, Richard P, Bowen J H, Ding H, Xu Y M, Li L J, Cao G H, Xu Z A and Takahashi T 2009 New J. Phys. 11 025020
[27]
Dressel M and Grüner G 2002 Electrodynamics of Solids (Cambridge: Cambridge University Press)
[1]
Optical study on topological superconductor candidate Sr-doped Bi2Se3 Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.