Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048505    DOI: 10.1088/1674-1056/25/4/048505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy

Gang-Cheng Jiao(焦岗成)1,2, Zheng-Tang Liu(刘正堂)1, Hui Guo(郭晖)2, Yi-Jun Zhang(张益军)3
1 State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2 Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710065, China;
3 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9P0.1/GaAs0.9P0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μ-0.6 μ.
Keywords:  GaAsP-based photocathodes      transmission-mode      quantum efficiency      molecular beam epitaxy  
Received:  05 November 2015      Revised:  30 December 2015      Accepted manuscript online: 
PACS:  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
  73.61.Ey (III-V semiconductors)  
  79.60.-i (Photoemission and photoelectron spectra)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).
Corresponding Authors:  Gang-Cheng Jiao     E-mail:  jiaogc613@163.com

Cite this article: 

Gang-Cheng Jiao(焦岗成), Zheng-Tang Liu(刘正堂), Hui Guo(郭晖), Yi-Jun Zhang(张益军) Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy 2016 Chin. Phys. B 25 048505

[1] Edgecumbe J P, Aebi V W and Davis G A 1992 Proc. SPIE 1655 204
[2] Kirschner J, Oepen H P and Ibach H 1983 Appl. Phys. A 30 177
[3] Mirzoyan R, Ferenc D and Lorenz E 2000 Nucl. Instrum. Methods Phys. Res. A 442 140
[4] Contarino V M, Molchanov P A and Asmolova O V 2005 Proc. SPIE 5656 156
[5] Bazarov I V, Dunham B M, Li, Y, Liu X, Ouzounov D G, Sinclair C K, Hannon F and Miyajima T 2008 J. Appl. Phys. 103 054901
[6] Maruyama T, Luh D A, Brachmann A, Clendenin J E, Garwin E L, Harvey S, Prepost R and Moy A M 2004 Appl. Phys. Lett. 85 2640
[7] Jin X, Ozdol B, Yamamoto M, Mano A, Yamamoto N and Takeda Y 2014 Appl. Phys. Lett. 105 203509
[8] Hayashida M, Ninkovic J, Hose J, Hsu C C, Mirzoyan and Teshima M 2007 Nucl. Instrum. Methods Phys. Res. A 572 456
[9] Hayashida M, Mirzoyan R and Teshima M 2006 Nucl. Instrum. Methods Phys. Res. A 567 180
[10] Ohnuki T, Michalet X, Tripathi A, Weiss S and Arisaka K 2006 Proc. SPIE 6092 60920P
[11] Saito Y, Mishima K, Matsubayashi M, Lim I C, Cha J E and Sim C H 2005 Nucl. Instrum. Methods Phys. Res. A 542 309
[12] Giudicotti L, Pasqualotto R, Alfier A, Beurskens M N A, Kempenaars M, Flanagan J C, Walsh M J and Balboa I 2011 Fusion Eng. Des. 86 198
[13] LaRue R Https://www.sbir.gov/sbirsearch/detail/201796
[2007]
[14] Antypas G A and Edgecumbe J 1975 Appl. Phys. Lett. 26 371
[15] Nahory R E, Pollack M A, Johnston W D and Barns R L 1978 Appl. Phys. Lett. 33 659
[16] Escher J S and Antypas G A 1977 Appl. Phys. Lett. 30 314
[17] Seredin P V, Lenshin A S, Glotov A V, Arsentyev I N, Vinokurov D A, Tarasov I S, Prutskij T, Leiste H and Rinke M 2014 Semiconductors 48 1094
[18] Jiao G C, Hu C L, Liu J and Qian Y S 2015 Appl. Opt. 54 8473
[19] Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K and Qian Y S 2011 Chin. Phys. B 20 118501
[20] Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 49 3935
[21] Sinor T W, Estrera J P, Phillips D L and Rector M K 1995 Proc. SPIE 2551 130
[22] Https://www.hamamatsu.com/resources/pdf/etd/C9016_TAPP1046E.pdf
[2009]
[23] Zhang Y J, Niu J, Zhao J, Zou J J and Chang B K 2011 Acta Phys. Sin. 60 067301 (in Chinese)
[24] Aspnes D E, Kelso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754
[25] Cetin S S, Kinaci B, Asar T, Kars I, Ozturk M K, Mammadov T S and Ozcelik S 2010 Surf. Interface Anal. 42 1252
[26] Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[7] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[8] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[9] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[10] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[11] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[12] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[13] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
No Suggested Reading articles found!