CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content |
Rui Li(李睿)1, Ming-Sheng Xu(徐明升)1, Peng Wang(汪鹏)1, Cheng-Xin Wang(王成新)2, Shang-Da Qu(屈尚达)1, Kai-Ju Shi(时凯居)1, Ye-Hui Wei(魏烨辉)1, Xian-Gang Xu(徐现刚)3, and Zi-Wu Ji(冀子武)1,† |
1 School of Microelectronics, Shandong University, Jinan\/ 250100, China; 2 Shandong Inspur Huaguang Optoelectronics Co., Ltd., Weifang\/ 261061, China; 3 State Key Laboratory of Crystal Materials, Shandong University, Jinan\/ 250100, China |
|
|
Abstract Photoluminescence (PL) spectra of two different green InGaN/GaN multiple quantum well (MQW) samples S1 and S2, respectively with a higher growth temperature and a lower growth temperature of InGaN well layers are analyzed over a wide temperature range of 6 K-330 K and an excitation power range of 0.001 mW-75 mW. The excitation power-dependent PL peak energy and linewidth at 6 K show that in an initial excitation power range, the emission process of the MQW is dominated simultaneously by the combined effects of the carrier scattering and Coulomb screening for both the samples, and both the carrier scattering effect and the Coulomb screening effect are stronger for S2 than those for S1; in the highest excitation power range, the emission process of the MQWs is dominated by the filling effect of the high-energy localized states for S1, and by the Coulomb screening effect for S2. The behaviors can be attributed to the fact that sample S2 should have a higher amount of In content in the InGaN well layers than S1 because of the lower growth temperature, and this results in a stronger component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatch-induced quantum-confined Stark effect. This explanation is also supported by other relevant measurements of the samples, such as temperature-dependent peak energy and excitation-power-dependent internal quantum efficiency.
|
Received: 21 October 2020
Revised: 10 December 2020
Accepted manuscript online: 01 January 1900
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.67.De
|
(Quantum wells)
|
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672163 and 51872167) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112). |
Corresponding Authors:
†Corresponding author. E-mail: jiziwu@sdu.edu.cn
|
Cite this article:
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武) Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content 2021 Chin. Phys. B 30 047801
|
1 Tan S T, Sun X W, Demir H V and Denbaars S P 2012 IEEE Photon. J. 4 613 2 Cheng L W, Ma J, Cao C R, Xu Z Z, Lan T, Yang J P, Chen H T, Yu H Y, Wu S D, Yao S, Zeng X H and Xu Z Q 2018 Chin. Phys. B 27 088504 3 Guo X, Liu Q L, Li C, Liu B, Dong J and Shen G D 2015 Chin. Phys. B 24 068505 4 Tsao J Y, Crawford M H, Coltrin M E, Fischer A J and Karlicek R F 2014 Adv. Opt. Mater. 2 809 5 Maur M A D, Pecchia A, Penazzi G, Rodrigues W and Carlo A D 2016 Phys. Rev. Lett. 116 027401 6 Li C F, Shi K J, Xu M S, X G Xu and Ji Z W 2019 Chin. Phys. B 28 107803 7 O'Donnell K P, Maur M A D, Carlo A D and Lorenz K 2012 Phys. Status Solidi RRL 6 49 8 Li J M and Zhang G Q 2019 Light-emitting Diode Materials, Processes, Devices and Applications, Vol. 4(Cham: Springer) p. 281 9 Yamashita K, Sugiyama T, Iwai M, Honda Y, Yoshino T and H Amano 2014 Proc. SPIE 9003 90030E 10 Jahangir S, Banerjee A and Bhattacharya P 2013 Phys. Status Solidi 10 812 11 Zhou S J, Liu X T, Yan H, Gao Y L, Xu H H, Zhao J, Quan Z J, Gui C Q and Liu S 2018 Sci. Rep. 8 11053 12 Jeong H, Jeong H J, Oh H M, Hong C H, Suh E K, Lerondel G and Jeong M S 2015 Sci. Rep. 5 9373 13 Bhuiyan A G, Hashimoto A and Yamamoto A 2003 J. Appl. Phys. 94 2779 14 Massabuau F C P, Davies M J, Oehler F, Pamenter S K, Thrush E J, Kappers M J, Kovàcs A, Williams T, Hopkins M A, Humphreys C J, Dawson P, Dunin-Borkowski R E, Etheridge J, Allsopp D W E and Oliver R A 2014 Appl. Phys. Lett. 105 112110 15 Kappers M J, Zhu T, Sahonta S L, Humphreys C J and Oliver R A 2015 Phys. Status Solidi C 12 403 16 Uedono A, Ishibashi S, Oshima N, Suzuki R and Sumiya M 2014 Ecs Trans. 61 19 17 Armstrong A, Henry T A, Koleske D D, Crawford M H and Lee S R 2012 Opt. Express 20 A812 18 Hammersley S, Kappers M J, Massabuau C P, Sahonta S L, Dawson P, Oliver R A and Humphreys C J 2015 Appl. Phys. Lett. 107 132106 19 Shi K J, Li H B, Xu M S, Li C F, Wei Y H, Xu X G and Ji Z W 2020 J. Lumin. 223 117225 20 Liu J, Jia Z, Ma S, Dong H, Zhai G and Xu B 2018 Superlattices Microstruct. 113 497 21 Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z and Yang H F 2013 J. Appl. Phys. 114 093508 22 Liu W, Zhao D G Jiang D S, Shi D P, Zhu J J, Liu Z S, Chen P, Yang J, Liang F, Liu S T, Xing Y, Zhang L Q, Wang W J, Li M, Zhang Y T and Du G T 2018 Opt. Express 26 3427 23 Yang J, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Liu J P, Zhang L Q, Yang H, Zhang Y T and Du G T 2016 J. Alloys Compd. 681 522 24 Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13 25 Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702 26 Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G and Ji Z W 2016 Physica E 76 1 27 Wang Q, Ji Z W, Wang F, Mu Q, Zheng Y J, Xu X G, Lv Y J and Feng Z H 2015 Chin. Phys. B 24 024219 28 Ma Z and Pierz K 2002 Surf. Sci. 511 57 29 Wang H N, Ji Z W, Xiao H D, Wang M Q, Qu S, Shen Y and Xu X G 2014 Physica E 59 56 30 Li X, Zhao D G, Jiang D S, Yang J, Chen P, Liu Z S, Zhu J J, Liu W, He X G, Li X J, Liang F, Liu J P, Zhang L Q, Yang H, Zhang Y T, Du G T, Long H and Li M 2017 Chin. Phys. B 26 017805 31 Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X X and Mino H 2012 Opt. Express 20 3932 32 Kaneta A, Kim Y S, Funato M, Kawakami Y, Enya Y, Kyono T, Ueno M and Nakamura T 2012 Appl. Phys. Express 5 102104 33 Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370 34 Varshni Y P 1967 Physica 34 149 35 Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B and Xu X G 2017 Opt. Express 25 A871 36 Li C F, Ji Z W, Li J F, Xu M S, Xiao H D and Xu X G 2017 Sci. Rep. 7 15301 37 Armstrong A M, Crawford M H and Koleske D D 2014 Appl. Phys. Express 7 032101 38 Zhou S J, Liu X T, Yan H, Gao Y L, Xu H H, Zhao J, Quan Z J, Gui C Q and Liu S 2018 Sci. Rep. 8 11053 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|