Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047801    DOI: 10.1088/1674-1056/abd692
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content

Rui Li(李睿)1, Ming-Sheng Xu(徐明升)1, Peng Wang(汪鹏)1, Cheng-Xin Wang(王成新)2, Shang-Da Qu(屈尚达)1, Kai-Ju Shi(时凯居)1, Ye-Hui Wei(魏烨辉)1, Xian-Gang Xu(徐现刚)3, and Zi-Wu Ji(冀子武)1,†
1 School of Microelectronics, Shandong University, Jinan\/ 250100, China; 2 Shandong Inspur Huaguang Optoelectronics Co., Ltd., Weifang\/ 261061, China; 3 State Key Laboratory of Crystal Materials, Shandong University, Jinan\/ 250100, China
Abstract  Photoluminescence (PL) spectra of two different green InGaN/GaN multiple quantum well (MQW) samples S1 and S2, respectively with a higher growth temperature and a lower growth temperature of InGaN well layers are analyzed over a wide temperature range of 6 K-330 K and an excitation power range of 0.001 mW-75 mW. The excitation power-dependent PL peak energy and linewidth at 6 K show that in an initial excitation power range, the emission process of the MQW is dominated simultaneously by the combined effects of the carrier scattering and Coulomb screening for both the samples, and both the carrier scattering effect and the Coulomb screening effect are stronger for S2 than those for S1; in the highest excitation power range, the emission process of the MQWs is dominated by the filling effect of the high-energy localized states for S1, and by the Coulomb screening effect for S2. The behaviors can be attributed to the fact that sample S2 should have a higher amount of In content in the InGaN well layers than S1 because of the lower growth temperature, and this results in a stronger component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatch-induced quantum-confined Stark effect. This explanation is also supported by other relevant measurements of the samples, such as temperature-dependent peak energy and excitation-power-dependent internal quantum efficiency.
Keywords:  photoluminescence      carrier localization effect      internal quantum efficiency      growth temperature  
Received:  21 October 2020      Revised:  10 December 2020      Accepted manuscript online:  01 January 1900
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.67.De (Quantum wells)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  78.66.Fd (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672163 and 51872167) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112).
Corresponding Authors:  Corresponding author. E-mail: jiziwu@sdu.edu.cn   

Cite this article: 

Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武) Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content 2021 Chin. Phys. B 30 047801

1 Tan S T, Sun X W, Demir H V and Denbaars S P 2012 IEEE Photon. J. 4 613
2 Cheng L W, Ma J, Cao C R, Xu Z Z, Lan T, Yang J P, Chen H T, Yu H Y, Wu S D, Yao S, Zeng X H and Xu Z Q 2018 Chin. Phys. B 27 088504
3 Guo X, Liu Q L, Li C, Liu B, Dong J and Shen G D 2015 Chin. Phys. B 24 068505
4 Tsao J Y, Crawford M H, Coltrin M E, Fischer A J and Karlicek R F 2014 Adv. Opt. Mater. 2 809
5 Maur M A D, Pecchia A, Penazzi G, Rodrigues W and Carlo A D 2016 Phys. Rev. Lett. 116 027401
6 Li C F, Shi K J, Xu M S, X G Xu and Ji Z W 2019 Chin. Phys. B 28 107803
7 O'Donnell K P, Maur M A D, Carlo A D and Lorenz K 2012 Phys. Status Solidi RRL 6 49
8 Li J M and Zhang G Q 2019 Light-emitting Diode Materials, Processes, Devices and Applications, Vol. 4(Cham: Springer) p. 281
9 Yamashita K, Sugiyama T, Iwai M, Honda Y, Yoshino T and H Amano 2014 Proc. SPIE 9003 90030E
10 Jahangir S, Banerjee A and Bhattacharya P 2013 Phys. Status Solidi 10 812
11 Zhou S J, Liu X T, Yan H, Gao Y L, Xu H H, Zhao J, Quan Z J, Gui C Q and Liu S 2018 Sci. Rep. 8 11053
12 Jeong H, Jeong H J, Oh H M, Hong C H, Suh E K, Lerondel G and Jeong M S 2015 Sci. Rep. 5 9373
13 Bhuiyan A G, Hashimoto A and Yamamoto A 2003 J. Appl. Phys. 94 2779
14 Massabuau F C P, Davies M J, Oehler F, Pamenter S K, Thrush E J, Kappers M J, Kovàcs A, Williams T, Hopkins M A, Humphreys C J, Dawson P, Dunin-Borkowski R E, Etheridge J, Allsopp D W E and Oliver R A 2014 Appl. Phys. Lett. 105 112110
15 Kappers M J, Zhu T, Sahonta S L, Humphreys C J and Oliver R A 2015 Phys. Status Solidi C 12 403
16 Uedono A, Ishibashi S, Oshima N, Suzuki R and Sumiya M 2014 Ecs Trans. 61 19
17 Armstrong A, Henry T A, Koleske D D, Crawford M H and Lee S R 2012 Opt. Express 20 A812
18 Hammersley S, Kappers M J, Massabuau C P, Sahonta S L, Dawson P, Oliver R A and Humphreys C J 2015 Appl. Phys. Lett. 107 132106
19 Shi K J, Li H B, Xu M S, Li C F, Wei Y H, Xu X G and Ji Z W 2020 J. Lumin. 223 117225
20 Liu J, Jia Z, Ma S, Dong H, Zhai G and Xu B 2018 Superlattices Microstruct. 113 497
21 Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z and Yang H F 2013 J. Appl. Phys. 114 093508
22 Liu W, Zhao D G Jiang D S, Shi D P, Zhu J J, Liu Z S, Chen P, Yang J, Liang F, Liu S T, Xing Y, Zhang L Q, Wang W J, Li M, Zhang Y T and Du G T 2018 Opt. Express 26 3427
23 Yang J, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Liu J P, Zhang L Q, Yang H, Zhang Y T and Du G T 2016 J. Alloys Compd. 681 522
24 Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13
25 Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702
26 Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G and Ji Z W 2016 Physica E 76 1
27 Wang Q, Ji Z W, Wang F, Mu Q, Zheng Y J, Xu X G, Lv Y J and Feng Z H 2015 Chin. Phys. B 24 024219
28 Ma Z and Pierz K 2002 Surf. Sci. 511 57
29 Wang H N, Ji Z W, Xiao H D, Wang M Q, Qu S, Shen Y and Xu X G 2014 Physica E 59 56
30 Li X, Zhao D G, Jiang D S, Yang J, Chen P, Liu Z S, Zhu J J, Liu W, He X G, Li X J, Liang F, Liu J P, Zhang L Q, Yang H, Zhang Y T, Du G T, Long H and Li M 2017 Chin. Phys. B 26 017805
31 Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X X and Mino H 2012 Opt. Express 20 3932
32 Kaneta A, Kim Y S, Funato M, Kawakami Y, Enya Y, Kyono T, Ueno M and Nakamura T 2012 Appl. Phys. Express 5 102104
33 Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
34 Varshni Y P 1967 Physica 34 149
35 Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B and Xu X G 2017 Opt. Express 25 A871
36 Li C F, Ji Z W, Li J F, Xu M S, Xiao H D and Xu X G 2017 Sci. Rep. 7 15301
37 Armstrong A M, Crawford M H and Koleske D D 2014 Appl. Phys. Express 7 032101
38 Zhou S J, Liu X T, Yan H, Gao Y L, Xu H H, Zhao J, Quan Z J, Gui C Q and Liu S 2018 Sci. Rep. 8 11053
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
No Suggested Reading articles found!