Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018202    DOI: 10.1088/1674-1056/25/1/018202
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Interfacial transport in lithium-ion conductors

Shaofei Wang(王少飞) and Liquan Chen(陈立泉)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.

Keywords:  ionic conductivity      diffusion      interface      grain boundary      lithium battery      impedance      nuclear magnetic resonance  
Received:  03 June 2015      Revised:  11 August 2015      Accepted manuscript online: 
PACS:  82.45.Gj (Electrolytes)  
  66.30.H- (Self-diffusion and ionic conduction in nonmetals)  

Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Natural Science Foundation of China (Grant Nos. 51325206 and 11234013) and the National Basic Research Program of China (Grant No. 2012CB932900).

Corresponding Authors:  Shaofei Wang     E-mail:

Cite this article: 

Shaofei Wang(王少飞) and Liquan Chen(陈立泉) Interfacial transport in lithium-ion conductors 2016 Chin. Phys. B 25 018202

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Edström K, Gustafsson T and Thomas J O 2004 Electrochim. Acta 50 397
[3] Smith K and Wang C Y 2006 J. Power Sources 161 628
[4] Agrawal R C and Gupta R K 1999 J. Mater. Sci. 34 1131
[5] Wolf D and Yip S 1992 Materials Interfaces: Atomic-Level Structure and Properties (London: Chapman & Hall) pp. 1-55
[6] Chadwick G A and Smith D A 1976 Grain Boundary Structure and Properties (London: Academic Press)
[7] Lejček P and Hofmann S 1995 Critical Reviews in Solid State and Material Sciences 20 1
[8] Kingery W 1974 J. Am. Ceram. Soc. 57 1
[9] Beekmans N M and Heyne L 1976 Electrochim. Acta 21 303
[10] Verkerk M J, Middelhuis B J and Burggraaf A J 1982 Solid State Ionics 6 159
[11] Jamnik J and Maier J 1997 Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 101 23
[12] Barsoukov E and Macdonald J R 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: John Wiley & Sons)
[13] Liang C 1973 J. Electrochem. Soc. 120 1289
[14] Bunde A, Dieterich W and Roman E 1985 Phys. Rev. Lett. 55 5
[15] Bunde A and Kantelhardt J 2005 Diffusion and Conduction in Percolation Systems, in Diffusion in Condensed Matter (ed. Heitjans P and Kärger J) (Berlin: Springer) pp. 895-914
[16] Dudney N 1985 J. Am. Ceram. Soc. 68 538
[17] Uvarov N, Isupov V, Sharma V and Shukla A 1992 Solid State Ionics 51 41
[18] Skyllas-Kazacos M, Chakrabarti M, Hajimolana S, Mjalli F and Saleem M 2011 J. Electrochem. Soc. 158 R55
[19] Wang Y, He P and Zhou H 2012 Advanced Energy Materials 2 770
[20] Abe T, Sagane F, Ohtsuka M, Iriyama Y and Ogumi Z 2005 J. Electrochem. Soc. 152 A2151
[21] Mehrotra A, Ross P N and Srinivasan V 2014 J. Electrochem. Soc. 161 A1681
[22] Sagane F, Abe T and Ogumi Z 2009 The Journal of Physical Chemistry C 113 20135
[23] Sagane F, Abe T and Ogumi Z 2012 J. Electrochem. Soc. 159 A1766
[24] Meyer W H 1998 Adv. Mater. 10 439
[25] Wright P V 1975 British Polymer Journal 7 319
[26] Wieczorek W, Florjanczyk Z and Stevens J 1995 Electrochim. Acta 40 2251
[27] Wieczorek W, Such K, Wyciślik H and Plocharski J 1989 Solid State Ionics 36 255
[28] Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E and Hendrickson M 2001 Electrochim. Acta 46 2457
[29] Jayathilaka P, Dissanayake M, Albinsson I and Mellander B E 2002 Electrochim. Acta 47 3257
[30] Delmas C, Maccario M, Croguennec L, Le Cras F and Weill F 2008 Nature Materials 7 665
[31] Park M, Zhang X, Chung M, Less G B and Sastry A M 2010 J. Power Sources 195 7904
[32] Heitjans P and Indris S 2003 Journal of Physics: Condensed Matter 15 R1257
[33] Block H, Kelly J P, Qin A and Watson T 1990 Langmuir 6 6
[34] Harrop P J 1972 Dielectrics (London: John Wiley & Sons)
[35] Daniel V V 1967 Dielectric Relaxation (London: Academic Press)
[36] Varela J A and Whittemore O J 1983 J. Am. Ceram. Soc. 66 77
[37] Alias R 2013 Structural and Dielectric Properties of Glass-Ceramic Substrate with Varied Sintering Temperatures (INTECH Open Access Publisher)
[38] Irvine J T, Sinclair D C and West A R 1990 Adv. Mater. 2 132
[39] Gerhardt R 1994 J. Phys. Chem. Solids 55 1491 Wang S, Ben L, Li H and Chen L 2014 Solid State Ion. 268 110
[40] Wang S, Ben L, Li H and Chen L 2014 Solid State Ion. 268 110
[41] Heitjans P and Wilkening M 2009 Mrs. Bull. 34 915
[42] Indris S and Heitjans P 2002 J. Non-cryst. Solids 307 555
[43] Heitjans P, Masoud M, Feldhoff A and Wilkening M 2007 Faraday Discuss. 134 67
[44] Wilkening M, Epp V, Feldhoff A and Heitjans P 2008 The Journal of Physical Chemistry C 112 9291
[45] Wilkening M, Indris S and Heitjans P 2003 Phys. Chem. Chem. Phys. 5 2225
[46] Heitjans P, Indris S and Wilkening M 2005 Diffusion Fundamentals 2 45
[47] Swaroop S, Kilo M, Argirusis C, Borchardt G and Chokshi A H 2005 Acta Mater.53 4975
[48] Zhu X, Ong C S, Xu X, Hu B, Shang J, Yang H, Katlakunta S, Liu Y, Chen X and Pan L 2013 Scientific Reports 3
[49] Maier J 2005 Nature Materials 4 805
[50] Maier J 2003 Solid State Ionics 157 327
[51] Scrosati B, Hassoun J and Sun Y K 2011 Energy & Environmental Science 4 3287
[52] Quartarone E and Mustarelli P 2011 Chem. Soc. Rev. 40 2525
[53] Croce F, Appetecchi G, Persi L and Scrosati B 1998 Nature 394 456
[54] Stephan A M and Nahm K 2006 Polymer 47 5952
[55] Manthiram A 2011 The Journal of Physical Chemistry Letters 2 176
[56] Balke N, Jesse S, Morozovska A, Eliseev E, Chung D, Kim Y, Adamczyk L, Garcia R, Dudney N and Kalinin S 2010 Nature Nanotechnology 5 749
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[5] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[6] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[7] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[8] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[9] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[10] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[11] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[15] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
No Suggested Reading articles found!