Special Issue:
TOPICAL REVIEW — Fundamental physics research in lithium batteries
|
TOPICAL REVIEW—Fundamental physics research in lithium batteries |
Prev
Next
|
|
|
Size effects in lithium ion batteries |
Hu-Rong Yao(姚胡蓉)1,2, Ya-Xia Yin(殷雅侠)1, Yu-Guo Guo (郭玉国)1,2,3 |
1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shandong Wina Green Power Co. Ltd., Shouguang 262705, China |
|
|
Abstract Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.
|
Received: 11 May 2015
Revised: 07 July 2015
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000). |
Corresponding Authors:
Yu-Guo Guo
E-mail: ygguo@iccas.ac.cn
|
Cite this article:
Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国) Size effects in lithium ion batteries 2016 Chin. Phys. B 25 018203
|
[1] |
Maier J 2005 Nat. Mater. 4 805
|
[2] |
Wu X L, Jiang L Y, Cao F F, Guo Y G and Wan L J 2009 Adv. Mater. 21 2710
|
[3] |
Wu X L, Guo Y G, Su J, Xiong J W, Zhang Y L and Wan L J 2013 Advanced Energy Materials 3 1155
|
[4] |
Yang J, Han X, Zhang X, Cheng F and Chen J 2013 Nano Research 6 679
|
[5] |
Hu Y S, Kienle L, Guo Y G and Maier J 2006 Adv. Mater. 18 1421
|
[6] |
Feng G X, Li L F, Liu J Y, Liu N, Li H, Yang X Q, Huang X J, Chen L Q, Nam K W and Yoon W S 2009 Journal of Materials Chemistry 19 2993
|
[7] |
Yu X Y, Bin Wu H, Yu L, Ma F X and Lou X W 2015 Angewandte Chemie-International Edition 54 4001
|
[8] |
Pfanzelt M, Kubiak P, Fleischhammer M and Wohlfahrt-Mehrens M 2011 Journal of Power Sources 196 6815
|
[9] |
Ouyang C Y, Zhong Z Y and Lei M S 2007 Electrochemistry Communications 9 1107
|
[10] |
Prakash A S, Manikandan P, Ramesha K, Sathiya M, Tarascon J M and Shukla A K 2010 Chemistry of Materials 22 2857
|
[11] |
Zhang B, Liu Y, Huang Z, Oh S, Yu Y, Mai Y W and Kim J K 2012 Journal of Materials Chemistry 22 12133
|
[12] |
Zhao Y, Peng L, Liu B and Yu G 2014 Nano. Lett. 14 2849
|
[13] |
Malik R, Burch D, Bazant M and Ceder G 2010 Nano. Lett. 10 4123
|
[14] |
Liu N, Li H, Wang Z X, Huang X J and Chen L Q 2006 Electrochemical and Solid State Letters 9 A328
|
[15] |
Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H and Honma I 2007 J. Am. Chem. Soc. 129 7444
|
[16] |
Zhang W M, Wu X L, Hu J S, Guo Y G and Wan L J 2008 Advanced Functional Materials 18 3941
|
[17] |
Guo Y G, Hu Y S, Sigle W and Maier J 2007 Adv. Mater. 19 2087
|
[18] |
Wu L J, Wiesmann H J, Moodenbaugh A R, Klie R F, Zhu Y M, Welch D O and Suenaga M 2004 Phys. Rev. B 69 125415
|
[19] |
Tsunekawa S, Ito S, Mori T, Ishikawa K, Li Z Q and Kawazoe Y 2000 Phys. Rev. B 62 3065
|
[20] |
Balaya P and Maier J 2010 Physical Chemistry Chemical Physics 12 215
|
[21] |
Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon J M and Masquelier C 2008 Nat. Mater. 7 741
|
[22] |
Zhu C, Mu X, Popovic J, Weichert K, van Aken P A, Yu Y and Maier J 2014 Nano. Lett. 14 5342
|
[23] |
Schimanke G and Martin M 2000 Solid State Ionics 136 1235
|
[24] |
Zhu C, Gu L, Suo L, Popovic J, Li H, Ikuhara Y and Maier J 2014 Advanced Functional Materials 24 312
|
[25] |
Sun Y, Lu X, Xiao R, Li H and Huang X 2012 Chemistry of Materials 24 4693
|
[26] |
Malik R, Zhou F and Ceder G 2011 Nat. Mater. 10 587
|
[27] |
Kobayashi G, Nishimura S i, Park M S, Kanno R, Yashima M, Ida T and Yamada A 2009 Advanced Functional Materials 19 395
|
[28] |
Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochemical and Solid State Letters 2 547
|
[29] |
Liu B, Soares P, Checkles C, Zhao Y and Yu G 2013 Nano. Lett. 13 3414
|
[30] |
Piper D M, Travis J J, Young M, Son S B, Kim S C, Oh K H, George S M, Ban C and Lee S H 2014 Adv. Mater. 26 1596
|
[31] |
Ko M, Chae S, Jeong S, Oh P and Cho J 2014 Acs Nano 8 8591
|
[32] |
Ma H, Ji W Q, Yang X J, Tao Z L and Chen J 2009 Science in China. Series B, Chemistry 39 918
|
[33] |
Chen J, Xu L N, Li W Y and Gou X L 2005 Adv. Mater. 17 582
|
[34] |
Denis S, Baudrin E, Touboul M and Tarascon J M 1997 Journal of the Electrochemical Society 144 4099
|
[35] |
Li H, Balaya P and Maier J 2004 Journal of the Electrochemical Society 151 A1878
|
[36] |
Zhukovskii Y F, Balaya P, Kotomin E A and Maier J 2006 Phys. Rev. Lett. 96
|
[37] |
Bekaert E, Balaya P, Murugavel S, Maier J and Menetrier M 2009 Chemistry of Materials 21 856
|
[38] |
Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 J. Am. Chem. Soc. 135 975
|
[39] |
Bhattacharyya A J and Maier J 2004 Adv. Mater. 16 811
|
[40] |
Whiteside A, Fisher C A J, Parker S C and Islam M S 2014 Physical Chemistry Chemical Physics 16 21788
|
[41] |
Andreev Y G, Panchmatia P M, Liu Z, Parker S C, Islam M S and Bruce P G 2014 J. Am. Chem. Soc. 136 6306
|
[42] |
Barnard A S and Zapol P 2004 Journal of Physical Chemistry B 108 18435
|
[43] |
Moriguchi K, Munetoh S, Abe M, Yonemura M, Kamei K, Shintani A, Maehara Y, Omaru A and Nagamine M 2000 J. Appl. Phys. 88 6369
|
[44] |
Kramer D and Ceder G 2009 Chemistry of Materials 21 3799
|
[45] |
Seriani N 2009 Nanotechnology 20
|
[46] |
Catlow C R A, Bromley S T, Hamad S, Mora-Fonz M, Sokol A A and Woodley S M 2010 Physical Chemistry Chemical Physics 12 786
|
[47] |
Qian D, Hinuma Y, Chen H, Du L S, Carroll K J, Ceder G, Grey C P and Meng Y S 2012 J. Am. Chem. Soc. 134 6096
|
[48] |
Ouyang C Y, Sljivancanin Z and Baldereschi A 2010 Journal of Chemical Physics 133
|
[49] |
Ganapathy S and Wagemaker M 2012 Acs Nano 6 8702
|
[50] |
Tompsett D A, Parker S C, Bruce P G and Islam M S 2013 Chemistry of Materials 25 536
|
[51] |
Park S B, Park C K, Hwang J T, Cho W I and Jang H 2011 Metals and Materials International 17 1017
|
[52] |
Suo L, Han W, Lu X, Gu L, Hu Y S, Li H, Chen D, Chen L, Tsukimoto S and Ikuhara Y 2012 Physical Chemistry Chemical Physics 14 5363
|
[53] |
Zhu Y, Wang J W, Liu Y, Liu X, Kushima A, Liu Y, Xu Y, Mao S X, Li J, Wang C and Huang J Y 2013 Adv. Mater. 25 5461
|
[54] |
Abdellahi A, Akyildiz O, Malik R, Thornton K and Ceder G 2014 Journal of Materials Chemistry A 2 15437
|
[55] |
Naoi K, Naoi W, Aoyagi S, Miyamoto J I and Kamino T 2013 Accounts of Chemical Research 46 1075
|
[56] |
Zhang W D, Xu B and Jiang L C 2010 Journal of Materials Chemistry 20 6383
|
[57] |
Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z and Liu J 2011 Adv. Mater. 23 3155
|
[58] |
Pan H, Lu X, Yu X, Hu Y S, Li H, Yang X Q and Chen L 2013 Advanced Energy Materials 3 1186
|
[59] |
Kim J, Seo D H, Kim H, Park I, Yoo J K, Jung S K, Park Y U, Goddard W A III and Kang K 2015 Energy & Environmental Science 8 540
|
[60] |
Wu N, Lyu Y C, Xiao R J, Yu X, Yin Y X, Yang X Q, Li H, Gu L and Guo Y G 2014 Npg Asia Materials 6 e120
|
[61] |
Wu N, Yang Z Z, Yao H R, Yin Y X, Gu L and Guo Y G 2015 Angewandte Chemie-International Edition 54 5757
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|