CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band |
Zhi-Biao Xu(徐志彪)1, Zhao-Hui Qi(齐照辉)2, Guo-Wu Wang(王国武)1, Chang Liu(刘畅)1, Jing-Hao Cui(崔晶浩)1, Wen-Liang Li(李文梁)1, and Tao Wang(王涛)1,† |
1 Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 The Institute of Effectiveness Evaluation of Flying Vehicle, Beijing 100089, China |
|
|
Abstract The high-performance electromagnetic (EM) wave absorption material Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ was prepared by solid-state reaction, and its EM wave absorption properties were deeply studied. The results revealed that Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ could obtain excellent absorption properties in hundreds of megahertz by adjusting the Co$^{2+}$-Ti$^{4+}$ content. The best comprehensive property was obtained for $x=1.2$, where the optimal reflection loss ($RL$) value reaches $-30.42$ dB at about 600 MHz with thickness of 3.5 mm, and the corresponding effective absorption band covers the frequency range of 437 MHz-1 GHz. Moreover, the EM wave absorption mechanism was studied based on the simulation methods. The simulated results showed that the excellent EM wave absorption properties of Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ mainly originated from the internal loss caused by natural resonance, and the interface cancelation further improved the absorption properties and resulted in $RL$ peaks.
|
Received: 23 November 2021
Revised: 22 January 2022
Accepted manuscript online: 07 February 2022
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574122) and the Joint Fund of Equipment Pre-Research and Ministry of Education, China (Grant No. 6141A02033242). |
Corresponding Authors:
Tao Wang
E-mail: wtao@lzu.edu.cn
|
Cite this article:
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛) Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band 2022 Chin. Phys. B 31 087504
|
[1] Liu J, Zhang L and Wu H 2021 J. Phys. D 54 203001 [2] Solgi S, Seyed Dorraji M S, Hosseini S F, Rasoulifard M H, Hajimiri I and Amani-Ghadim A 2021 Sci. Rep. 11 19339 [3] Zeng X, Cheng X, Yu R and Stucky G D 2020 Carbon 168 606 [4] Gao S, Wang G S, Guo L and Yu S H 2020 Small 16 1906668 [5] Xiao L X, Jin Z, Xia Z C, Shi L R, Huang J W, Chen B R, Shang C, Wei M and Long Z 2015 Chin. Phys. Lett. 32 017501 [6] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 027501 [7] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 087503 [8] Li X Y, Zhao L, Wei X Y, Li H and Jin K X 2018 Chin. Phys. B 27 117501 [9] Sun X D, Xu B, Wu H Y, Cao F Z, Zhao J J and Lu Y 2017 Acta Phys. Sin. 66 157501 (in Chinese) [10] Gong B C, Yang H C, Jin K, Liu K and Lu Z Y 2020 Chin. Phys. B 29 077508 [11] Cui Q, Cai Y Q, X Li, Dun Z L, Sun P J, Zhou J S, Zhou H D and Cheng J G 2020 Chin. Phys. B 29 047502 [12] Li Y W, Song J, Wei J L, Zhou Y B and Li G 2014 Appl. Mech. Mater. 577 48 [13] Xue W, Yang G, Bi S, Zhang J and Hou Z L 2021 Carbon 173 521 [14] Wu C, Maier J and Yu Y 2016 Adv. Mater. 28 174 [15] Wang Y, Du Y, Xu P, Qiang R and Han X 2017 Polymers (Basel) 9 29 [16] Wu Y P, Ong C K, Lin G Q and Li Z W 2006 J. Phys. D:Appl. Phys. 39 2915 [17] Peng L, Hu Y B, Guo C, Li L Z, Wang R, Hu Y and Tu X Q 2015 Chin. Phys. Lett. 32 017502 [18] Wang Z L, Ma H, Wang F, Li M, Zhang L G and Xu X H 2016 Chin. Phys. Lett. 33 107501 [19] Liu D, Gao S, Jin R, Wang F, Chu X, Gao T and Wang Y 2019 Chin. Phys. B 28 057503 [20] Cheng Y, Ji G, Li Z, Lv H, Liu W, Zhao Y, Cao J and Du Y 2017 J. Alloys Compd. 704 289 [21] Zheng J, Du K, Xiao D, Zhou Z Y, Wei W G, Chen J J, Yin L F and J Shen 2016 Chin. Phys. Lett. 33 097501 [22] He X M, Zhong W and Du Y W 2018 Acta Phys. Sin. 67 227501 (in Chinese) [23] Hu Q, Qiao G, Yang W, Liu Z, Zhang P, Liu S, Wang C, Zhou D, Han R, Cai D, Hu B and Yang J 2020 J. Phys. D 53 115001 [24] Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X and Wu L S 2020 Chin. Phys. B 29 057503 [25] Wang W, Guo J, Long C, Li W and Guan J 2015 J. Alloys Compd. 637 106 [26] Wang X, Song K, Gong W, Luo H, Yan S and Gong R 2016 IEEE Trans. Magn. 52 1 [27] Sugimoto S, Haga K, Kagotani T and Inomata K 2005 J. Magn. Magn. Mater. 290-291 1188 [28] Li D M, Fang S K, Tong J S, Su J, Zhang N and Song J L 2018 Acta Phys. Sin. 67 067501 (in Chinese) [29] Wang F, Long C, Wu T, Li W, Chen Z, Xia F, Wu J and Guan J 2020 J. Alloys Compd. 823 153827 [30] Shu J C, Huang X Y and Cao M S 2021 Carbon 174 638 [31] Peng H, Ma X, Liu C, Lei C, Li X and Xiong Z 2021 J. Alloys Compd. 889 161636 [32] Houbi A, Aldashevich Z A, Atassi Y, Bagasharova Telmanovna Z, Saule M and Kubanych K 2021 J. Magn. Magn. Mater. 529 167839 [33] Li J, Xu T, Liu L, Hong Y, Song Z, Bai H and Zhou Z 2021 Ceram. Int. 47 19247 [34] Chang Y, Zhang Y, Meng C, Liu S, Chang H and Liu Z 2020 Appl. Phys. Lett. 116 082404 [35] Sözeri H, Deligöz H, Kavas H and Baykal A 2014 Ceram. Int. 40 8645 [36] Gan G, Zhang H, Li Q, Li J, Li M, Xu F and Jing Y 2018 Mater. Res. Bull. 97 37 [37] Yang Y, Zhang H, Li J, Rao Y, Wang G and Gan G 2020 Ceram. Int. 46 25697 [38] Gan G, Zhang D, Li J, Wang G, Huang X, Yang Y, Rao Y, Wang X and Zhang H 2020 Ceram. Int. 46 27996 [39] Gan G, Zhang D, Li J, Wang G, Huang X, Rao Y, Yang Y, Wang X, Zhang H, Chen R T 2020 Ceram. Int. 46 8398 [40] Wang X, Yin K, Cao T, Liao Y, Wang Z, Kou Q and Cheng D 2021 J. Alloys Compd. 885 160983 [41] Xu J, Lin P, Chen Q, Zhao X, He P, Lin T, Jiang C, Liu Y, Liu H and Long W 2021 Ceram. Int. 47 973 [42] Tehrani M K, Ghasemi A, Moradi M and Alam R S 2011 J. Alloys Compd. 509 8398 [43] Chawla S K, Mudsainiyan R K, Meena S S and Yusuf S M 2014 J. Magn. Magn. Mater. 350 23 [44] Morrish A H, Zhou X Z, Yang Z and Zeng H X 1994 Hyperfine Interact. 90 365 [45] Li J, Zhang H, Liu Y, Liao Y, Ma G and Yang H 2015 Mater. Res. Express 2 046104 [46] Wang C, Li L T, Zhou J, Qi X W and Yue Z X 2002 J. Mater. Sci. 13 713 [47] Ma G, Duan Y, Liu Y and Gao S 2018 J. Mater. Sci. 29 17405 [48] Ge C, Wang L, Liu G and Wang T 2018 J. Alloys Compd. 767 173 [49] Yan L, Wang J, Han X, Ren Y, Liu Q and Li F 2010 Nanotechnology 21 095708 [50] Wang T, Wang H, Tan G G, Wang L and Qiao L 2015 IEEE Trans. Magn. 51 1 [51] Wang T, Han R, Tan G, Wei J, Qiao L and Li F 2012 J. Appl. Phys. 112 104903 [52] Tang M, Zhang J Y, Bi S, Hou Z L, Shao X H, Zhan K T and Cao M S 2019 ACS Appl. Mater. Inter. 11 33285 [53] Zhang J, Wang P, Wang G, Duan B, Wang T and Li F 2020 J. Magn. Magn. Mater. 498 166096 [54] Dong C, Wang X, Zhou P, Liu T, Xie J and Deng L 2014 J. Magn. Magn. Mater. 354 340 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|