Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064302    DOI: 10.1088/1674-1056/ac3812
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improving sound diffusion in a reverberation tank using a randomly fluctuating surface

Qi Li(李琪)1,2,3, Dingding Xie(谢丁丁)1,2,3, Rui Tang(唐锐)1,2,3,†, Dajing Shang(尚大晶)1,2,3, and Zhichao Lv(吕志超)4
1 Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
4 College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
Abstract  Underwater reverberation environments that satisfy the conditions of uniformity and isotropy of the diffuse field can be used to measure the acoustic characteristics of underwater targets. This study combines two practical indicators — the standard deviation of the absolute sound pressure field (to indicate uniformity) and the analysis of the wavenumber spectrum in the spherical harmonics domain (to indicate isotropy) — for an accurate evaluation of the diffusion of the sound field in a reverberation tank. A method is proposed that can improve the narrow-band diffusion of the sound field by employing a randomly fluctuating surface. An acoustic experiment was performed in a reverberation water tank (1.2 m×1 m×0.8 m), where a randomly fluctuating surface was generated by making waves. The experimental results show that as the wave motion contributes effectively to the random reflection of sound rays in all directions, the uniformity and isotropy are improved significantly when the surface is fluctuating randomly. This work helps to ensure accurate measurements of the characteristics of underwater targets in reverberation tanks.
Keywords:  sound diffusion      reverberation tank      randomly fluctuating surface      acoustic measurements  
Received:  30 July 2021      Revised:  17 October 2021      Accepted manuscript online:  10 November 2021
PACS:  43.30.+m (Underwater sound)  
  43.58.+z (Acoustical measurements and instrumentation)  
  43.55.+p (Architectural acoustics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874131).
Corresponding Authors:  Rui Tang     E-mail:  tangrui@hrbeu.edu.cn

Cite this article: 

Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超) Improving sound diffusion in a reverberation tank using a randomly fluctuating surface 2022 Chin. Phys. B 31 064302

[1] Schultz T J 1971 J. Sound Vib. 16 17
[2] Waterhouse R V 1963 J. Acoust. Soc. Am. 43 1436
[3] Jacobsen F and Molares R A 2021 J. Acoust. Soc. Am. 127 233
[4] Pierce A D 1981 Acoustics: An Introduction to Its Physical Principles and Applications 3rd ed. (New York: McGraw-Hill) p. 298
[5] Lubman D 1971 J. Sound Vib. 16 43
[6] Lubman D 1973 J. Acoust. Soc. Am. 53 650
[7] Schroeder M R 1996 J. Acoust. Soc. Am. 99 3240
[8] Blake W K and Maga L J 1975 J. Acoust. Soc. Am. 57 380
[9] Cochard N and Lacoume J L 2000 IEEE J. Oceanic Eng. 25 516
[10] Shang D J, Tang R, Li Q and Song J P 2020 J. Sound. Vib. 468 115071
[11] Zhang Y M, Tang R, Li Q and Shang D J 2018 Meas. Sci. Technol. 29 035101
[12] Tang R, Yu X Y, Shang D J and Li Q 2019 Meas. Sci. Technol. 30 075006
[13] Cox T J and D'Antonio P 2017 Aoustic Absorbers and Diffusers: Theory, Design and Application, 3rd ed. (Boca Raton: CRC press)
[14] Tichy J and Baade P K 1974 J. Acoust. Soc. Am. 56 137
[15] Hwang Y F and Tichy J 1981 J. Acoust. Soc. Am. 70 90
[16] Rosny J D, Debever C, Conti S and Roux P 2005 Appl. Phys. Lett. 87 154104
[17] Thorsos E I and Jackson D R 2012 AIP Conference Proceedings 1495 127
[18] Siderius M and Porter M B 2008 J. Acoust. Soc. Am. 124 137
[19] Tindle C T, Deane G B and Preisig J C 2009 J. Acoust. Soc. Am. 125 66
[20] Liu R Y and Li Z L 2019 Chin. Phys. B 28 014302
[21] Nélisse H and Nicolas J 1997 J. Acoust. Soc. Am. 101 3517
[22] Nolan M, Fernandez-Grande E, Brunskog J and Jeong C H 2018 J. Acoust. Soc. Am. 143 2514
[23] Nolan M, Berzborn M and Fernandez-Grande E 2020 J. Acoust. Soc. Am. 148 1077
[24] Nolan M, Verburg S A, Brunskog J and Fernandez-Grande E 2019 J. Acoust. Soc. Am. 145 2237
[25] Nolan M 2020 J. Acoust. Soc. Am. 147 EL119
[26] Gover B N, Ryan J and Stinson M 2002 J. Acoust. Soc. Am. 112 1980
[27] Gover B N, Ryan J and Stinson M 2004 J. Acoust. Soc. Am. 116 2138
[28] Rafaely B 2000 J. Acoust. Soc. Am. 107 3254
[29] Galdo G D, Taseska M, Thiergart O, Ahonen J and Pulkki V 2012 J. Acoust. Soc. Am. 131 2141
[30] Gotz P, Kowalczyk K, Silzle A and Habets E A P 2015 J. Acoust. Soc. Am. 137 EL206
[31] Epain N and Jin C T 2016 IEEEACM Trans. Audio Speech Lang. Process. 24 1796
[32] Jeong C H 2016 J. Acoust. Soc. Am. 139 2833
[33] Prislan R, Brunskog J, Jacobsen F and Jeong C H 2014 J. Acoust. Soc. Am. 136 1654
[34] Chu T W 1981 J. Acoust. Soc. Am. 69 1710
[35] Williams E G 1999 Fourier Acoustics: Sound Radiation and Near-Field Acoustical Holography (New York: Academic) chapter 2
[36] Rafaely B 2015 Fundamentals of spherical array processing (Springer: Berlin Heidelberg) pp. 17
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[3] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[4] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[5] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[6] A novel multi-cavity Helmholtz muffler
Han-Bo Shao(邵瀚波), Huan He(何欢), Yan Chen(陈岩), Guo-Ping Chen(陈国平). Chin. Phys. B, 2019, 28(5): 054303.
[7] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[8] Effects of rough surface on sound propagation in shallow water
Ruo-Yun Liu(刘若芸), Zheng-Lin Li(李整林). Chin. Phys. B, 2019, 28(1): 014302.
[9] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
[10] Radiation from finite cylindrical shell with irregular-shaped acoustic enclosure
De-Sen Yang(杨德森), Rui Zhang(张睿), Sheng-Guo Shi(时胜国). Chin. Phys. B, 2018, 27(10): 104301.
[11] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[12] Simultaneous detection of the acoustic-field aberration and Doppler shift in forward acoustic scattering
Chuan-Lin He(何传林), Kun-De Yang(杨坤德), Yuan-Liang Ma(马远良), Bo Lei(雷波). Chin. Phys. B, 2017, 26(1): 014301.
[13] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[14] Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance
Bo Hu(胡博), Jie Shi(时洁), Sheng-Guo Shi(时胜国), Yu Sun(孙玉), Zhong-Rui Zhu(朱中锐). Chin. Phys. B, 2016, 25(2): 024305.
[15] Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel
Zhong Jie (钟杰), Wen Ji-Hong (温激鸿), Zhao Hong-Gang (赵宏刚), Yin Jian-Fei (尹剑飞), Yang Hai-Bin (杨海滨). Chin. Phys. B, 2015, 24(8): 084301.
No Suggested Reading articles found!