Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077802    DOI: 10.1088/1674-1056/24/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Linear optical properties of defective KDP with oxygen vacancy: First-principles calculations

Chen Xin (陈鑫)a b c, Zhao Qian-Qian (赵倩倩)a b, Wang Xiao-Chun (王晓春)a b, Chen Jun (陈军)d, Ju Xin (巨新)e
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
c Collage of Chemistry, Jilin University, Changchun 130012, China;
d Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
e Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

The linear optical properties of potassium dihydrogen phosphate (KDP) with oxygen vacancy are investigated with first-principles density functional theory calculations. We use Heyd–Scuseria–Ernzerhof (HSE06) functional to calculate the linear optical properties because of its accuracy in the band gap calculation. Compared with the perfect KDP, we found that due to the defect states located at the band gap, the defective KDP with oxygen vacancy has new optical adsorption within the energy region from 4.8 eV to 7.0 eV (the corresponding wavelength region is from 258 nm to 177 nm). As a result, the oxygen vacancy can decrease the damage threshold of KDP crystal. It may give a direction to the KDP production for laser system.

Keywords:  first-principles calculations      potassium dihydrogen phosphate      oxygen vacancy      linear optical study  
Received:  24 December 2014      Revised:  17 April 2015      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  31.15.A- (Ab initio calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474123), the Natural Science Foundation of Jilin Province, China (Grant No. 20130101011JC), and the Fundamental Research Funds for Central Universities of China.

Corresponding Authors:  Wang Xiao-Chun     E-mail:  wangxiaochun@jlu.edu.cn

Cite this article: 

Chen Xin (陈鑫), Zhao Qian-Qian (赵倩倩), Wang Xiao-Chun (王晓春), Chen Jun (陈军), Ju Xin (巨新) Linear optical properties of defective KDP with oxygen vacancy: First-principles calculations 2015 Chin. Phys. B 24 077802

[1] Nelmes R J, Meyer G M and Tibballs J E 1982 J. Phys. C: Solid State Phys. 15 59
[2] Davis J E, Hughes Jr R S and Lee H W H 1993 Chem. Phys. Lett. 207 540
[3] Setzler S D, Stevens K T, Halliburton L E, Yan M, Zaitseva N P and DeYoreo J J 1998 Phys. Rev. B 57 2643
[4] Liu C S, Hou C J, Kioussis N, Demos S G and Radousky H B 2005 Phys. Rev. B 72 134110
[5] Gao H, Sun X, Liu B A, Xu M X, Hu G H, Xu X G and Zhao X 2010 Chin. Phys. Lett. 27 073101
[6] Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D and Fan Z X 2009 Chin. Phys. Lett. 26 097802
[7] Hu G H, Zhao Y A, Sun S T, Li D W, Sun X, Shao J D and Fan Z X 2009 Chin. Phys. Lett. 26 087801
[8] Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A and Deb S 2003 Phys. Rev. B 68 233204
[9] Hou Q Y, Guo S Q and Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese)
[10] Becke A D 1993 J. Chem. Phys. 98 1372
[11] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[12] Park S, Lee B, Jeon S H and Han S 2011 Current Appl. Phys. 11 S337
[13] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[14] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17] Dimitriev G, Gurzaddyan G G and Nikogosyan D N 1997 Handbook of Nonlinear Optical Crystals (Berlin: Springer)
[18] Aliabad H A R, Fathabadi M and Ahmad I 2013 Int. J. Quant. Chem. 113 865
[19] Zhang Q, Chen F, Kioussis N, Demos S G and Radousky H B 2001 Phys. Rev. B 65 024108
[20] Lin Z S, Wang Z Z, Chen C T and Lee M H 2003 J. Chem. Phys. 118 2349
[21] Carr C W, Radousky H B and Demos S G 2003 Phys. Rev. Lett. 91 127402
[22] Zhu S J, Wang S L, Liu L, Wang D L, Li W D, Huang P P and Xu X G 2014 Acta Phys. Sin. 63 107701 (in Chinese)
[23] Zernike J F 1964 J. Opt. Soc. Am. 54 1215
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[15] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
No Suggested Reading articles found!