Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077801    DOI: 10.1088/1674-1056/24/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical analysis of semi/non-polar InGaN/GaN light-emitting diodes grown on silicon substrates

Yu Lei (于磊)a, Zhang Yuan-Wen (张苑文)a, Li Kai (李凯)a, Pi Hui (皮辉)a, Diao Jia-Sheng (刁家声)a, Wang Xing-Fu (王幸福)a, Hu Wen-Xiao (胡文晓)a, Zhang Chong-Zhen (张崇臻)a, Song Wei-Dong (宋伟东)a, Shen Yue (沈岳)a, Li Shu-Ti (李述体)a b
a Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
b Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Guangzhou 510631, China
Abstract  A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes (LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells (QWs) approaching the p-GaN side, the uniformity of distribution of carriers and radiative recombination rate for the non-polar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.
Keywords:  semi/non-polar      InGaN/GaN LEDs      APSYS      Si substrate  
Received:  07 November 2014      Revised:  02 February 2015      Accepted manuscript online: 
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Jb (Light-emitting devices)  
  87.16.ad (Analytical theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), the Science and Technology Program of Guangzhou, China (Grant No. 2011J4300018), and the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13064).
Corresponding Authors:  Li Shu-Ti     E-mail:  lishuti@scnu.edu.cn

Cite this article: 

Yu Lei (于磊), Zhang Yuan-Wen (张苑文), Li Kai (李凯), Pi Hui (皮辉), Diao Jia-Sheng (刁家声), Wang Xing-Fu (王幸福), Hu Wen-Xiao (胡文晓), Zhang Chong-Zhen (张崇臻), Song Wei-Dong (宋伟东), Shen Yue (沈岳), Li Shu-Ti (李述体) Theoretical analysis of semi/non-polar InGaN/GaN light-emitting diodes grown on silicon substrates 2015 Chin. Phys. B 24 077801

[1] Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
[2] Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L and Li S T 2014 Chin. Phys. B 23 068502
[3] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 r10024
[4] Rau B, Waltereit P, Brandt O, Ramsteiner M, Ploog K H, Puls J and Henneberger F 2000 Appl. Phys. Lett. 77 3343
[5] Hisashi M, Mathew C S, Arpan C, Nakamura S and Steven P D 2006 Jpn. J. Appl. Phys. 45 7661
[6] Jung S, Jung S, Chang Y, Bang K H, Kim H G, Choi Y H, Hwang S M and Baik K H 2012 Semicond. Sci. Tech. 27 024017
[7] Zhou X W, Xu S R, Zhang J C, Dang J Y, Lv L, Hao Y and Guo L X 2012 Chin. Phys. B 21 67803
[8] Zhao L B, Yu T J, Wu J J, Yang Z J and Zhang G Y 2010 Chin. Phys. B 19 18101
[9] Ravash R, Ravash R, Dadgar A, Bertram F, Dempewolf A, Metzner S, Hempel T, Christen J and Krost A 2013 J. Cryst. Growth 370 288
[10] Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
[11] Izyumskaya N, Liu S J, Avrutin V, Ni X F, Wu M, Özgür Ü, Metzner S, Bertram F, Christen J, Zhou L, Smith D J and Morkoç H 2011 J. Cryst. Growth 314 129
[12] Gerbedoen J C, Soltani A, Joblot S, De Jaeger J C, Gaquiere C, Cordier Y and Semond F 2010 IEEE T. Electron Dev. 57 1497
[13] Liu H H, Lin H Y, Liao C Z and Chyi J I 2013 ECS J. Solid State Sc. 2 N3001
[14] Izyumskaya N, Zhang F, Okur S, Selden T and Avrutin V 2013 J. Appl. Phys. 114 113502
[15] Chen G T, Chang S P, Chyi J I and Chang M N 2008 Appl. Phys. Lett. 92 241904
[16] Chiu C H, Lin D W, Lin C C, Li Z Y, Chang W T, Hsu H W, Kuo H C, Lu T C, Wang S C, Liao W T, Tanikawa T, Honda Y, Yamaguchi M and Sawaki N 2011 Appl. Phys. Express 4 012105
[17] Andreev Z, Römer F and Witzigmann B 2012 Phys. Status Solidi A 209 487
[18] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504
[19] Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
[20] Tong J H, Zhao B J, Wang X F, Chen X, Ren Z W, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 068505
[21] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[22] Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
[23] Song T L 2005 J. Appl. Phys. 98 084906
[24] Feltin E, Beaumont B, Laügt M, de Mierry P, Vennégués P, Lahréche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
[25] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[26] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
[27] Daniel F F, James S S, Steven P D and Nakamura S 2013 J. Disp. Technol. 9 190
[1] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[2] Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate
Wang Zhang(张望), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Qi-Feng Lv(吕奇峰), Xiang-Hai Ji(季祥海), Tao Yang(杨涛), Fu-Hua Yang(杨富华). Chin. Phys. B, 2017, 26(8): 088101.
[3] Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer
Ping Qin(秦萍), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Yuan-Wen Zhang(张苑文), Chong-Zhen Zhang(张崇臻), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Chao Xia(夏超), Song-Yang Yuan(袁松洋), Yi-an Yin(尹以安), Shu-Ti Li(李述体), Shi-Chen Su(宿世臣). Chin. Phys. B, 2016, 25(8): 088505.
[4] Performance improvement of GaN-based light-emitting diodes transferred from Si (111) substrate onto electroplating Cu submount with embedded wide p-electrodes
Liu Ming-Gang (柳铭岗), Wang Yun-Qian (王云茜), Yang Yi-Bin (杨亿斌), Lin Xiu-Qi (林秀其), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Zang Wen-Jie (臧文杰), Liao Qiang (廖强), Lin Jia-Li (林佳利), Luo Hui (罗慧), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君). Chin. Phys. B, 2015, 24(3): 038503.
[5] AlGaInP–Si glue bonded high performance light emitting diodes
Chen Yi-Xin(陈依新), Shen Guang-Di(沈光地), Guo Wei-Ling(郭伟玲), and Gao Zhi-Yuan(高志远) . Chin. Phys. B, 2011, 20(8): 087203.
[6] The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates
Liu Zhe(刘喆), Wang Xiao-Liang(王晓亮), Wang Jun-Xi(王军喜), Hu Guo-Xin(胡国新), Guo Lun-Chun(郭伦春), and Li Jin-Min(李晋闽). Chin. Phys. B, 2007, 16(5): 1467-1471.
No Suggested Reading articles found!