CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical analysis of semi/non-polar InGaN/GaN light-emitting diodes grown on silicon substrates |
Yu Lei (于磊)a, Zhang Yuan-Wen (张苑文)a, Li Kai (李凯)a, Pi Hui (皮辉)a, Diao Jia-Sheng (刁家声)a, Wang Xing-Fu (王幸福)a, Hu Wen-Xiao (胡文晓)a, Zhang Chong-Zhen (张崇臻)a, Song Wei-Dong (宋伟东)a, Shen Yue (沈岳)a, Li Shu-Ti (李述体)a b |
a Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China; b Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Guangzhou 510631, China |
|
|
Abstract A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes (LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells (QWs) approaching the p-GaN side, the uniformity of distribution of carriers and radiative recombination rate for the non-polar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.
|
Received: 07 November 2014
Revised: 02 February 2015
Accepted manuscript online:
|
PACS:
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
87.16.ad
|
(Analytical theories)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), the Science and Technology Program of Guangzhou, China (Grant No. 2011J4300018), and the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13064). |
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Yu Lei (于磊), Zhang Yuan-Wen (张苑文), Li Kai (李凯), Pi Hui (皮辉), Diao Jia-Sheng (刁家声), Wang Xing-Fu (王幸福), Hu Wen-Xiao (胡文晓), Zhang Chong-Zhen (张崇臻), Song Wei-Dong (宋伟东), Shen Yue (沈岳), Li Shu-Ti (李述体) Theoretical analysis of semi/non-polar InGaN/GaN light-emitting diodes grown on silicon substrates 2015 Chin. Phys. B 24 077801
|
[1] |
Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
|
[2] |
Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L and Li S T 2014 Chin. Phys. B 23 068502
|
[3] |
Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 r10024
|
[4] |
Rau B, Waltereit P, Brandt O, Ramsteiner M, Ploog K H, Puls J and Henneberger F 2000 Appl. Phys. Lett. 77 3343
|
[5] |
Hisashi M, Mathew C S, Arpan C, Nakamura S and Steven P D 2006 Jpn. J. Appl. Phys. 45 7661
|
[6] |
Jung S, Jung S, Chang Y, Bang K H, Kim H G, Choi Y H, Hwang S M and Baik K H 2012 Semicond. Sci. Tech. 27 024017
|
[7] |
Zhou X W, Xu S R, Zhang J C, Dang J Y, Lv L, Hao Y and Guo L X 2012 Chin. Phys. B 21 67803
|
[8] |
Zhao L B, Yu T J, Wu J J, Yang Z J and Zhang G Y 2010 Chin. Phys. B 19 18101
|
[9] |
Ravash R, Ravash R, Dadgar A, Bertram F, Dempewolf A, Metzner S, Hempel T, Christen J and Krost A 2013 J. Cryst. Growth 370 288
|
[10] |
Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
|
[11] |
Izyumskaya N, Liu S J, Avrutin V, Ni X F, Wu M, Özgür Ü, Metzner S, Bertram F, Christen J, Zhou L, Smith D J and Morkoç H 2011 J. Cryst. Growth 314 129
|
[12] |
Gerbedoen J C, Soltani A, Joblot S, De Jaeger J C, Gaquiere C, Cordier Y and Semond F 2010 IEEE T. Electron Dev. 57 1497
|
[13] |
Liu H H, Lin H Y, Liao C Z and Chyi J I 2013 ECS J. Solid State Sc. 2 N3001
|
[14] |
Izyumskaya N, Zhang F, Okur S, Selden T and Avrutin V 2013 J. Appl. Phys. 114 113502
|
[15] |
Chen G T, Chang S P, Chyi J I and Chang M N 2008 Appl. Phys. Lett. 92 241904
|
[16] |
Chiu C H, Lin D W, Lin C C, Li Z Y, Chang W T, Hsu H W, Kuo H C, Lu T C, Wang S C, Liao W T, Tanikawa T, Honda Y, Yamaguchi M and Sawaki N 2011 Appl. Phys. Express 4 012105
|
[17] |
Andreev Z, Römer F and Witzigmann B 2012 Phys. Status Solidi A 209 487
|
[18] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504
|
[19] |
Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
|
[20] |
Tong J H, Zhao B J, Wang X F, Chen X, Ren Z W, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 068505
|
[21] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[22] |
Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
|
[23] |
Song T L 2005 J. Appl. Phys. 98 084906
|
[24] |
Feltin E, Beaumont B, Laügt M, de Mierry P, Vennégués P, Lahréche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
|
[25] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[26] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[27] |
Daniel F F, James S S, Steven P D and Nakamura S 2013 J. Disp. Technol. 9 190
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|