Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068502    DOI: 10.1088/1674-1056/24/6/068502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Non-ideal effect in 4H—SiC bipolar junction transistor with double Gaussian-doped base

Yuan Lei (元磊)a, Zhang Yu-Ming (张玉明)a, Song Qing-Wen (宋庆文)a b, Tang Xiao-Yan (汤晓燕)a, Zhang Yi-Men (张义门)a
a Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
b School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
Abstract  The non-ideal effect of 4H–SiC bipolar junction transistor (BJT) with a double Gaussian-doped base is characterized and simulated in this paper. By adding a specific interface model between SiC and SiO2, the simulation results are in good agreement with the experiment data. An obvious early effect is found from the output characteristic. As the temperature rises, the early voltage increases, while the current gain gradually decreases, which is totally different from the scenario of silicon BJT. With the same effective Gummel number in the base region, the double Gaussian-doped base structure can realize higher current gain than the single base BJT due to the built-in electric field, whereas the early effect will be more salient. Besides, the emitter current crowding effect is also analyzed. Due to the low sheet resistance in the first highly-doped base epilayer, the 4H–BJT with a double base has more uniform emitter current density across the base-emitter junction, leading to better thermal stability.
Keywords:  4H-SiC BJT      double base      early voltage      emitter current crowding  
Received:  01 December 2014      Revised:  30 December 2014      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60876061 and 61234006), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JQ8012), and the Doctoral Fund of the Ministry of Education of China (Grant Nos. 20130203120017 and 20110203110010).
Corresponding Authors:  Song Qing-Wen     E-mail:  qwsong@xidian.edu.cn
About author:  85.30.Pq; 85.30.De; 81.15.-z

Cite this article: 

Yuan Lei (元磊), Zhang Yu-Ming (张玉明), Song Qing-Wen (宋庆文), Tang Xiao-Yan (汤晓燕), Zhang Yi-Men (张义门) Non-ideal effect in 4H—SiC bipolar junction transistor with double Gaussian-doped base 2015 Chin. Phys. B 24 068502

[1] Yuan H, Tang X Y, Zhang Y M, Zhang Y M, Song Q W, Yang F and Wu H 2014 Chin. Phys. B 23 057102
[2] Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201
[3] Song Q W, Zhang Y M, Han J S, Tanner Philip, Dimitrijev Sima, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
[4] Hiroki M, Tsunenobu K and Jun S 2011 IEEE Electron Dev. Lett. 32 841
[5] Hiroki M, Takafumi O, Hiroki N, Tsunenobu K and Jun S 2012 IEEE Electron Dev. Lett. 33 1598
[6] Zhang J H, Li X Q, Alexandrov P, Burke T and Zhao J H 2008 IEEE Electron Dev. Lett. 29 471
[7] Kenichi N, Akihiko H, Yuki N, Kensuke I, Seiichi Y, Hideki H, Masashi S, Yusuke M, Masaaki S and Hiroaki I 2009 Phys. Status Solidi A 206 2457
[8] Gerardo C L, Andrew J F, David L G and Jim R M 2014 IEEE Trans. Power Electron. 29 2474
[9] Saeed S, Alberto C and Patrick W 2014 IEEE Trans. Power Electron. 29 2584
[10] Zhang Q, Zhang Y M, Yuan L, Zhang Y M, Tang X Y and Song Q W 2012 Chin. Phys. B 21 088502
[11] Kimoto T and Cooper J 2014 Fundamentals of Silicon Carbide Echnology: Growth, Characterization, Devices and Applications, Appendix A: Incomplete Dopant Ionization in 4H-SiC (New York: Wiley-IEEE Press)
[12] Galeckas A, Linnros J, Grivickas V, Lindefelt U and Hallin C 1997 Appl. Phys. Lett. 71 3269
[13] Lindefelt U 1998 J. Appl. Phys. 84 2628
[14] Ruff M, Mitlehner H and Helbig R 1994 IEEE Trans. Electron Dev. 41 1040
[15] Roschke M and Schwierz F 2001 IEEE Trans. Electron Dev. 48 1442
[16] Buono B, Ghandi R, Domeij M, Malm B G, Zetterling C M and Ostling M 2010 IEEE Trans. Electron Dev. 57 704
[17] Lee H S, Domeij M, Zetterling C M, Östling M, Allerstam F and Sveinbjörnsson E 2007 IEEE Electron Dev. Lett. 28 1007
[18] ISE TCAD Release 10.0. Defining a Gaussian doping profile. P11.26
[19] Niccoló R 2000 IEEE Trans. Electron Dev. 47 2340
[20] Buono B, Ghandi R, Domeij M, Malm B G, Zetterling C M and Ostling M 2010 IEEE Trans. Electron Dev. 57 2664
[21] Yan G, Huang A Q, Krishnaswami S, Agarwal A K and Scozzie C 2006 IPEMC 2006, CES/IEEE 5th International Power Electronics and Motion Control Conference (IEEE Cat. No. 06EX1405), 2006, Shanghai, China, p. 157
[22] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer) p. 53
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[3] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[4] Snapback-free shorted anode LIGBT with controlled anode barrier and resistance
Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义). Chin. Phys. B, 2021, 30(2): 028501.
[5] High-performance inverters based on ambipolar organic-inorganic heterojunction thin-film transistors
Sheng Sun(孙圣), Yuzhi Li(李育智), Shengdong Zhang(张盛东). Chin. Phys. B, 2020, 29(5): 058503.
[6] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[7] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[8] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[9] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[10] Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves
Hui Li(李慧), Chang-Chun Chai(柴常春), Yu-Qian Liu(刘彧千), Han Wu(吴涵), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(8): 088502.
[11] A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design
Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义). Chin. Phys. B, 2018, 27(8): 088501.
[12] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[13] Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout
Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进), Jin-Zhong Zhang(张金中), Yan-Ling Shi(石艳玲). Chin. Phys. B, 2017, 26(9): 098502.
[14] An investigation of ionizing radiation damage in different SiGe processes
Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷). Chin. Phys. B, 2017, 26(8): 088503.
[15] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
No Suggested Reading articles found!