Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088503    DOI: 10.1088/1674-1056/26/8/088503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An investigation of ionizing radiation damage in different SiGe processes

Pei Li(李培)1, Mo-Han Liu(刘默寒)3, Chao-Hui He(贺朝会)1, Hong-Xia Guo(郭红霞)2, Jin-Xin Zhang(张晋新)1, Ting Ma(马婷)1
1 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 Northwest Institution of Nuclear Technology, Xi'an 710024, China;
3 Key Laboratory of Functional Materials and Devices for Special Environments of Chinese Academy of Sciences, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  

Different SiGe processes and device designs are the critical influences of ionizing radiation damage. Based on the different ionizing radiation damage in SiGe HBTs fabricated by Huajie and an IBM SiGe process, quantitatively numerical simulation of ionizing radiation damage was carried out to explicate the distribution of radiation-induced charges buildup in KT9041 and IBM SiGe HBTs. The sensitive areas of the EB-spacer and isolation oxide of KT9041 are much larger than those of the IBM SiGe HBT, and the distribution of charge buildup in KT9041 is several orders of magnitude greater than that of the IBM SiGe HBT. The result suggests that the simulations are consistent with the experiment, and indicates that the geometry of the EB-spacer, the area of the Si/SiO2 interface and the isolation structure could be contributing to the different ionizing radiation damage.

Keywords:  different silicon-germanium process      ionizing radiation damage      numerical simulation  
Received:  28 February 2017      Revised:  27 April 2017      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  61.80.Az (Theory and models of radiation effects)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  61.80.-x (Physical radiation effects, radiation damage)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61274106 and 61574171).

Corresponding Authors:  Chao-Hui He     E-mail:  hechaohui@mail.xjtu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷) An investigation of ionizing radiation damage in different SiGe processes 2017 Chin. Phys. B 26 088503

[1] Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 3
[2] Hansen D L, Pong S, Rosenthal P and Gorelick J 2007 "Total Ionizing Dose Testing of SiGe 7HP Discrete Heterojunction Bipolar Transistors for ELDRS Effects", Radiation Effects Data Workshop, pp. 215-220
[3] Zhang J, Guo Q, Guo H and Lu W 2016 Trans. Nucl. Sci. 63 2
[4] Fleetwood Z E, Cardoso A S, Song I and Wilcox E 2014 IEEE Trans. Nucl. Sci. 61 6
[5] Banerjee G, Niu G, Cressler J D and Clark S D 1999 IEEE Trans. Nucl. Sci. 46 6
[6] Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L and El-Diwany M 2006 Solid State Electron. 50 2
[7] Sun Y, Fu J, Xu J, Wang Y, Zhou W, Zhang W, Cui J, Li G and Liu Z 2014 Nucl. Instrum. Methods Phys. Res. 738 2
[8] Liu M, Lu W, Ma W, Wang X, Guo Q, He C, Jiang K, Li X and Xun M 2015 Chin. Phys. C 40 3
[9] Sun Y, Fu J, Xu J, Wang Y, Zhou W, Zhang W, Cui J, Li G and Liu Z 2014 Physica B: Phys. Conden. Matter 434 2
[10] Sutton A K, Prakash A P G and Jun B and Zhao E 2006 Trans. Nucl. Sci. 53 6
[11] Jiménezmolinos F, Gámiz F, Palma A, Cartujo P and Lópezvillanueva J A 2002 J. Appl. Phys. 91 8
[12] Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P and Wang X 2015 Microelectron. Reliab. 55 8
[13] Rieh J S, Jagannathan B, Greenberg D R, Meghelli M, Rylyakov A, Guarin F, Yang Z, Ahlgren D C, Freeman G and Cottrell P 2004 IEEE Trans. Microwave Theor. Techniq. 52 10
[14] Yang H 2005 "3D Device Simulation of SEU-Induced Charge Collection in 200 GHz SiGe HBTs", Alabama: Auburn University
[15] Tsetseris L, Schrimpf R D, Fleetwood D M and Pease R L 2005 IEEE Trans. Nucl. Sci. 52 6
[16] Sentaurus device user guide (version A-2008. 09). Synopsys, 2008
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!