CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor |
Xiao-Long Li(李小龙)1,2,3, Wu Lu(陆妩)1,2, Xin Wang(王信)1,2, Xin Yu(于新)1,2, Qi Guo(郭旗)1,2, Jing Sun(孙静)1,2, Mo-Han Liu(刘默寒)1,2,3, Shuai Yao(姚帅)1,2,3, Xin-Yu Wei(魏昕宇)1,2, Cheng-Fa He(何承发)1,2 |
1 Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; 2 Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The mechanisms occurring when the switched temperature technique is applied, as an accelerated enhanced low dose rate sensitivity (ELDRS) test technique, are investigated in terms of a specially designed gate-controlled lateral PNP transistor (GLPNP) that used to extract the interface traps (Nit) and oxide trapped charges (Not). Electrical characteristics in GLPNP transistors induced by 60Co gamma irradiation are measured in situ as a function of total dose, showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP. Based on the analysis of the variations of Nit and Not, with switching the temperature, the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation. Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup. In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP, which provides us with a new insight into the test technique for ELDRS.
|
Received: 04 August 2017
Revised: 27 November 2017
Accepted manuscript online:
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.80.Ed
|
(γ-ray effects)
|
|
85.30.Pq
|
(Bipolar transistors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532261 and 1630141). |
Corresponding Authors:
Wu Lu
E-mail: luwu@ms.xjb.ac.cn
|
Cite this article:
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发) Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor 2018 Chin. Phys. B 27 036102
|
[1] |
Enlow E W, Pease R L, Combs W, Schrimpf R D and Nowlin R N 1991 IEEE T. Nucl. Sci. 38 1342
|
[2] |
Pease R L, Platteter D G, Dunham G W, Seiler J E, Barnaby H J, Schrimpf R D, Shaneyfelt M R, Maher M C and Nowlin R N 2004 IEEE T. Nucl. Sci. 51 3773
|
[3] |
Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E and Pease R L 1994 IEEE T. Nucl. Sci. 41 1871
|
[4] |
Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E and Mattsson T R 2003 IEEE T. Nucl. Sci. 50 1901
|
[5] |
Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2004 IEEE T. Nucl. Sci. 51 3158
|
[6] |
Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E and Hjalmarson H P 2008 IEEE T. Nucl. Sci. 55 3169
|
[7] |
Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M and Pantelides S T 2010 IEEE T. Nucl. Sci. 57 3046
|
[8] |
McLean F B 1980 IEEE T. Nucl. Sci. 27 1651
|
[9] |
Chen X J, Barnaby H J, Vermeire B, Holbert K E, Wright D, Pease R L, Schrimpf R D, Fleetwood D M, Pantelides S T, Shaneyfelt M R and Adell P 2008 IEEE T. Nucl. Sci. 55 3032
|
[10] |
Carriere T, Ecoffet R and Poirot P 2000 IEEE T. Nucl. Sci. 47 2350
|
[11] |
Pease R L, Adell P C, Rax B, McClure S, Barnaby H J, Kruckmeyer K and Triggs B 2010 IEEE T. Nucl. Sci. 57 3419
|
[12] |
Boch J, Saigné F, Schrimpf R, Vaillé J R, Dusseau L, Ducret S, Bernard M, Lorfevre E and Chatry C 2005 IEEE T. Nucl. Sci. 52 2616
|
[13] |
Gonzalez-Velo Y, Boch J, Saigne F, Roche N J H, Perez S, Vaille J R, Deneau C, Dusseau L, Lorfevre E and Schrimpf R D 2011 IEEE T. Nucl. Sci. 58 2953
|
[14] |
Lu W, Ren D, Guo Q, Yu X, Zheng Y and Wang Y 2009 Atomic Energy Science and Technology 43 769 (in Chinese)
|
[15] |
Zheng Y, Wu L, Ren D and Guo Q 2013 IEEE European Conference on Radiation and Its Effects on Components and Systems (RADECS), Sempeter 23-27, Oxford, UK, p. 1
|
[16] |
Ma W Y, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X and Wu Z X 2014 Atomic Energy Science and Technology 48 2170 (in Chinese)
|
[17] |
Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 066103
|
[18] |
Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D, Shaneyfelt M and Vermeire B 2005 IEEE T. Nucl. Sci. 52 2245
|
[19] |
Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J and Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)
|
[20] |
Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L and Sun J 2012 Acta Phys. Sin. 61 076101 (in Chinese)
|
[21] |
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H and Jang K 2014 Acta Phys. Sin. 63 116101 (in Chinese)
|
[22] |
Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE T. Nucl. Sci. 58 2937
|
[23] |
Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Law M E, Tuttle B R and Pantelides S T 2012 IEEE T. Nucl. Sci. 59 3087
|
[24] |
Hughart D R, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE T. Nucl. Sci. 58 2930
|
[25] |
Witczak S C, Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L and Suehle J S 1997 IEEE T. Nucl. Sci. 44 1989
|
[26] |
Witczak S C, Schrimpf R D, Galloway K F, Fleetwood D M, Pease R L, Puhl J M, Schmidt D M, Combs W E and Suehle J S 1996 IEEE T. Nucl. Sci. 43 3151
|
[27] |
Boch J, Saigne F, Dusseau L and Schrimpf R D 2006 Appl. Phys. Lett. 89 042108
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|