Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088501    DOI: 10.1088/1674-1056/27/8/088501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design

Weizhong Chen(陈伟中)1,2, Yao Huang(黄垚)1, Lijun He(贺利军)1, Zhengsheng Han(韩郑生)2,3, Yi Huang(黄义)1
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A reverse-conducting lateral insulated-gate bipolar transistor (RC-LIGBT) with a trench oxide layer (TOL), featuring a vertical N-buffer and P-collector is proposed. Firstly, the TOL enhances both of the surface and bulk electric fields of the N-drift region, thus the breakdown voltage (BV) is improved. Secondly, the vertical N-buffer layer increases the voltage drop VPN of the P-collector/N-buffer junction, thus the snapback is suppressed. Thirdly, the P-body and the vertical N-buffer act as the anode and the cathode, respectively, to conduct the reverse current, thus the inner diode is integrated. As shown by the simulation results, the proposed RC-LIGBT exhibits trapezoidal electric field distribution with BV of 342.4 V, which is increased by nearly 340% compared to the conventional RC-LIGBT with triangular electric fields of 100.2 V. Moreover, the snapback is eliminated by the vertical N-buffer layer design, thus the reliability of the device is improved.

Keywords:  reverse-conducting lateral insulated-gate bipolar transistor (RC-LIGBT)      breakdown voltage      snapback phenomenon  
Received:  09 April 2018      Revised:  17 May 2018      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61604027), the Basic and Advanced Technology Research Project of Chongqing Municipality, China (Grant No. cstc2016jcyjA1923), the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission, China (Grant No. KJ1500404), the Youth Natural Science Foundation of Chongqing University of Posts and Telecommunications, China (Grant Nos. A2015-50 and A2015-52), the Chongqing Key Laboratory Improvement Plan, China (Chongqing Key Laboratory of Photo Electronic Information Sensing and Transmitting Technology) (Grant No. cstc2014pt-sy40001), and the University Innovation Team Construction Plan Funding Project of Chongqing, China (Architecture and Core Technologies of Smart Medical System) (Grant No. CXTDG201602009).

Corresponding Authors:  Weizhong Chen, Yao Huang     E-mail:  cwz@cqu.edu.cn;632752486@qq.com

Cite this article: 

Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义) A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design 2018 Chin. Phys. B 27 088501

[1] Zhu J, Zhang L, Sun W, Du Y C, Huang K Q, Chen M, Shi L X, Gu Y and Zhang S 2016 IEEE Trans. Electron. Dev. 63 1161
[2] Sun W, Zhu J, Zhang L, Yu H, D Y C, Huang K Q, Lu S L, Shi L X and Yi Y B 2015 IEEE Electron. Dev. Lett. 36 693
[3] Zhu J, Sun W, Dai W, Zhang L, Liu S L, Shi L X, Yi Y B, Zhang S and Sun W 2014 IEEE Trans. Electron. Dev. 61 3814
[4] Son W S, Sohn Y H and Choi S 2004 Microelectron. J. 35 393
[5] Varadarajan K R, Chow T P, Wang J, Liu R and Gonzalez F 2007 IEEE ISPSD 2007 p. 233
[6] Luo X R, Wang Q, Yao G L, Wang Y G and Zhou K 2013 Chin. Phys. B 22 027303
[7] Napoli E, Spirito P, Strollo A G M, Frisina F, Fragapane L and Fagone D 2002 IEEE Electron Dev. Lett. 23 532
[8] Zhang L, Zhu J, Sun W, Du Y C, Yu H, Hua K Q and Shi L X 2015 IEEE ISPSD p. 49
[9] Chen W Z, Li Z H, Ren M, Zhang J P, Zhang B, Liu Y, Hua Q, Mao K and Li Z J 2013 IEEE ISPSD p. 265
[10] Chen W Z, Li Z H, Zhang B, Ren M, Zhang J P, Liu Y and Li Z J 2014 Chin. Phys. B 23 018505
[11] Byeon D S, Chun J H, Lee B H, Kim D Y, Han M K and Choi Y I 1999 Microelectron. J. 30 571
[12] Chul J H, Byeon D S, Oh J K, Han M K and Choi Y K 2000 IEEE ISPSD p. 149
[13] Chen W, Zhang B and Li Z J 2010 IEEE Electron Dev. Lett. 31 467
[14] Zhu J, Zhang L, Sun W, Chen M, Zhou M, Zhao M, Shi L X, Gu Y and Zhang S 2016 IEEE Trans. Electron Dev. 63 2003
[15] Zhu J, Zhang L, Sun W, Chen M, Zhao M, Huang X, Chen J and Qian Y 2017 IEEE Electron Dev. Lett. 64 1187
[16] Sin J K O and Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45
[17] Green D W, Sweet M, Vershinin K V, Hardikar S and Narayanan E M S 2005 IEEE Trans. Electron Dev. 52 2482
[18] Jiang H P, Zhang B, Chen W J, Li Z J, Liu C, Rao Z G and Dong B 2012 IEEE Electron. Dev. Lett. 33 417
[19] Vemulapati U, Kaminski N, Silber D, Storasta L and Rahimo M 2014 IET Circuits Device Syst. 8 168
[20] Chen W Z, Zhang B, Li Z H, Ren M and Li Z J 2012 IEEE ICSICT p. 1
[21] Taurus Medici D A V I N C I User's Guides, Synopsys 2013
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!