Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038501    DOI: 10.1088/1674-1056/ac873d

High performance carrier stored trench bipolar transistor with dual shielding structure

Jin-Ping Zhang(张金平)1,2,†, Hao-Nan Deng(邓浩楠)1, Rong-Rong Zhu(朱镕镕)1, Ze-Hong Li(李泽宏)1, and Bo Zhang(张波)1
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China;
2 Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
Abstract  We propose a novel high performance carrier stored trench bipolar transistor (CSTBT) with dual shielding structure (DSS-CSTBT). The proposed DSS-CSTBT features a double trench structure with different trench profiles in the surface, in which a shallow gate trench is shielded by a deep emitter trench and a thick oxide layer under it. Compared with the conventional CSTBT (con-CSTBT), the proposed DSS-CSTBT not only alleviates the negative impact of the shallow gate trench and highly doped CS layer on the breakdown voltage (BV), but also well reduces the gate-collector capacitance $C_{\rm GC}$, gate charge $Q_{\rm G}$, and turn-off loss $E_{\rm OFF}$ of the device. Furthermore, lower turn-on loss $E_{\rm ON}$ and gate drive loss $E_{\rm DR}$ are also obtained. Simulation results show that with the same CS layer doping concentration $N_{\rm CS}=1.5\times10^{16 }$ cm$^{-3}$, the BV increases from 1312 V of the con-CSTBT to 1423 V of the proposed DSS-CSTBT with oxide layer thickness under gate ($T_{\rm og2}$) of 1 μm. Moreover, compared with the con-CSTBT, the $C_{\rm GC}$ at $V_{\rm CE} $ of 25 V and miller plateau charge ($Q_{\rm GC}$) for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm are reduced by 79.4% and 74.3%, respectively. With the $V_{\rm GE} $ increases from 0 V to 15 V, the total $Q_{\rm G}$ for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm is reduced by 49.5%. As a result, at the same on-state voltage drop ($V_{\rm CEON}$) of 1.55 V, the $E_{\rm ON}$ and $E_{\rm OFF}$ are reduced from 20.3 mJ/cm$^{2}$ and 19.3 mJ/cm$^{2}$ for the con-CSTBT to 8.2 mJ/cm$^{2}$ and 9.7 mJ/cm$^{2}$ for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm, respectively. The proposed DSS-CSTBT not only significantly improves the trade-off relationship between the $V_{\rm CEON}$ and $E_{\rm OFF }$ but also greatly reduces the $E_{\rm ON}$.
Keywords:  carrier stored trench bipolar transistor (CSTBT)      dual shielding structure      gate-collector capacitance      power loss  
Received:  24 June 2022      Revised:  23 July 2022      Accepted manuscript online:  05 August 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1201802), the Key Realm R&D Program of Guangdong Province, China (Grant No. 2018B010142001), and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2020A1515010128).
Corresponding Authors:  Jin-Ping Zhang     E-mail:

Cite this article: 

Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波) High performance carrier stored trench bipolar transistor with dual shielding structure 2023 Chin. Phys. B 32 038501

[1] Mori M, Saitou R and Yatsuo T 1993 Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, May 18-20, 1993, Monterey, USA, p. 287
[2] Ranstad P and Nee H P 2011 IEEE Trans. Power Electron. 26 260
[3] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer-Science)
[4] Kitagawa M, Omura I, Hasegawa S, Inoue T and Nakagawa A 1993 Proceedings of IEEE International Electron Devices Meeting, December 5-8, 1993, Washington, DC, USA, p. 679
[5] Ohi K, Ikura Y, Yoshimoto A, Sugimura K, Onozawa Y, Takahashi H and Otsuki M 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), May 10-14, 2015, Hong Kong, China, p. 25
[6] Yi B, Kong M F, Li P, Cheng J J and Chen X B 2019IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS), July 9-12, 2019, Toulouse, France, p. 1
[7] Feng H, Yang W, Onozawa Y, Yoshimura T, Tamenori A and Sin J K 2015 IEEE Electron Dev. Lett. 36 591
[8] Feng H, Yang W, Onozawa Y, Yoshimura T, Tamenori A and Sin J K 2015 IEEE Trans. Electron Dev. 62 2555
[9] Sumitomo M, Asai J, Sakane H, Arakawa k, Higuchi Y and Matsui M 2012 24th International Symposium on Power Semiconductor Devices and ICs, June 3-7, 2012, Bruges, Belgium, p. 17
[10] Sumitomo M, Sakane H, Arakawa K, Higuchi Y and Matsui M 2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD), May 26-30, 2013, Kanazawa, Japan, p. 33
[11] Takei M, Fujikake S, Nakazawa H, Naito T, Kawashima T, Shimoyama K and Kuribayashi H 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), June 6-10, 2010, Hiroshima, Japan, p. 383
[12] Zhang J P, Li Z H, Zhang B and Li Z J 2014 Chin. Phys. B 23 088504
[13] Zhang J P, Li Z H, Zhang B and Li Z J 2012 Electron. Lett. 48 525
[14] Zhang J P, Li Z H, Zhang B and Li Z J 2012 Chin. Phys. B 21 068504
[15] Saraya T, Itou K, Takakura T, et al. 2020 IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, CA, USA, pp. 5.3.1-5.3.4
[16] Deviny I, Luo H H, Xiao Q, Yao Y, Zhu C L, Ngwendson L K, Xiao H B, Dai X P and Liu G Y 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), May 28-June 1, 2017, Sapporo, Japan, p. 147
[17] Yao Y, Luo H H, Xiao Q, Zhu C L, Xiao H B, Qin R Z, Ngwendson L K, Ning X B, Tan C J, Deviny I and Dai X P 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 13-17, 2018, Chicago, IL USA, p. 112
[18] Zhang J P, Wang K, Luo J Y, Zhao Y, Li Z H, Ren M, Gao W and Zhang B 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), June 12-14, 2019, Xi'an, China, p. 1
[19] Zhang J P, Xiao X, Zhu R R, Zhao Q and Zhang B 2021 IEEE J. Electron Devices Soc. 9 704
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[3] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[4] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[5] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[10] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[11] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[12] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[13] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[14] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[15] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
No Suggested Reading articles found!