Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128501    DOI: 10.1088/1674-1056/ac8723
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An insulated-gate bipolar transistor model based on the finite-volume charge method

Manhong Zhang(张满红) and Wanchen Wu(武万琛)
School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Abstract  A finite-volume charge method has been proposed to simulate PIN diodes and insulated-gate bipolar transistor (IGBT) devices using SPICE simulators by extending the lumped-charge method. The new method assumes local quasi-neutrality in the undepleted N- base region and uses the total collector current, the nodal hole density and voltage as the basic quantities. In SPICE implementation, it makes clear and accurate definitions of three kinds of nodes — the carrier density nodes, the voltage nodes and the current generator nodes — in the undepleted N- base region. It uses central finite difference to approximate electron and hole current generators and sets up the current continuity equation in a control volume for every carrier density node in the undepleted N- base region. It is easy to increase the number of nodes to describe the fast spatially varying carrier density in transient processes. We use this method to simulate IGBT devices in SPICE simulators and get a good agreement with technology computer-aided design simulations.
Keywords:  finite-volume charge method      IGBT device      lumped charge method      SPICE simulation      TCAD simulation  
Received:  19 April 2022      Revised:  04 July 2022      Accepted manuscript online:  05 August 2022
PACS:  85.30.Pq (Bipolar transistors)  
  85.30.Kk (Junction diodes)  
  77.55.df (For silicon electronics)  
Corresponding Authors:  Manhong Zhang     E-mail:  zhangmanhong@ncepu.edu.cn

Cite this article: 

Manhong Zhang(张满红) and Wanchen Wu(武万琛) An insulated-gate bipolar transistor model based on the finite-volume charge method 2022 Chin. Phys. B 31 128501

[1] Strollo A G M 1997 IEEE Trans. Power Electron. 12 12
[2] Goebel H, Kraus R and Mattausch H J 1993 Proceedings of IEEE Power Electronics Specialist Conference - PESC'93, Seattle, WA, USA, p. 45
[3] Letureq P, Berraies M O and Massol J L 1996 Proceedings of 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, p. 35
[4] Hefner A R and Blackburn D L 1988 Solid State Electron. 31 1513
[5] Hefner A R 1995 IEEE Trans. Power Electron. 10 111
[6] Kraus R, Turkes P and Sigg J 1998 Proceedings of 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, p. 1726
[7] Cotorogea M 2009 IEEE Trans. Power Electron. 24 2821
[8] Buiatti G M, Cappelluti F and Ghione G 2007 IEEE Trans. Ind. 43 911
[9] Zhang M H and Zhai Y 2022 Solid State Electron. 190 108239
[10] Chibante R, Araujo A and Carvalho A 2009 IEEE Trans. Power Electron. 24 1417
[11] Ma L, Lauritzen P O and Sigg J 1997 IEEE Trans. Power Electron. 12 398
[12] Iannuzzo F and Busatto G 1999 Microelectronics Journal 30 543
[13] Bryant A T, Lu L Q, Santi E, Palmer P R and Hudgins J L 2008 IEEE Trans. Power Electron. 23 189
[14] Xue P, Fu G C and Zhang D 2017 IEEE Trans. Power Electron. 32 3075
[15] Lu L Q, Bryant A T, Hudgins J L, Palmer P R and Santi E 2010 IEEE Trans. Ind. Appl. 46 2556
[16] Kang X S, Caiafa A, Santi E, Hudgins J L and Palmer P R 2003 IEEE Trans. Ind. Appl. 39 922
[17] Li X, Luo Y F, Duan Y Q, Huang Y L and Liu B L 2019 IEEE J. Em. Sel. Top. Power Electron. 7 52
[18] Duan Y Q, Iannuzzo F and Blaabjerg F 2020 IEEE Trans. Power Electron. 35 3989
[19] Sheng K, Finney S J and Williams B W 1999 IEEE Trans. Power Electron. 14 98
[20] Feiler W, Gerlach W and Wiese U 1995 Solid State Electron. 38 1781
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[3] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[4] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[5] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[6] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[7] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
[8] Scaling effects of single-event gate rupture in thin oxides
Ding Li-Li (丁李利), Chen Wei (陈伟), Guo Hong-Xia (郭红霞), Yan Yi-Hua (闫逸华), Guo Xiao-Qiang (郭晓强), Fan Ru-Yu (范如玉). Chin. Phys. B, 2013, 22(11): 118501.
No Suggested Reading articles found!