Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028501    DOI: 10.1088/1674-1056/abb7fc

Snapback-free shorted anode LIGBT with controlled anode barrier and resistance

Shun Li(李顺)1, Jin-Sha Zhang(张金沙)1, Wei-Zhong Chen(陈伟中)1,2,†, Yao Huang(黄垚)1, Li-Jun He(贺利军)1, and Yi Huang(黄义)1
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  A novel shorted anode lateral-insulated gate bipolar transistor (SA LIGBT) with snapback-free characteristic is proposed and investigated. The device features a controlled barrier V barrier and resistance R SA in anode, named CBR LIGBT. The electron barrier is formed by the P-float/N-buffer junction, while the anode resistance includes the polysilicon layer and N-float. At forward conduction stage, the V barrier and R SA can be increased by adjusting the doping of the P-float and polysilicon layer, respectively, which can suppress the unipolar mode to eliminate the snapback. At turn-off stage, the low-resistance extraction path (N-buffer/P-float/polysilicon layer /N-float) can quickly extract the electrons in the N-drift, which can effectively accelerate the turn-off speed of the device. The simulation results show that at the same V on of 1.3 V, the E off of the CBR LIGBT is reduced by 85%, 73%, and 59.6% compared with the SSA LIGBT, conventional LIGBT, and TSA LIGBT, respectively. Additionally, at the same E off of 1.5 mJ/cm2, the CBR LIGBT achieves the lowest V on of 1.1 V compared with the other LIGBTs.
Keywords:  shorted anode lateral-insulated gate bipolar transistor      snapback      barrier      trade-off  
Received:  22 July 2020      Revised:  01 September 2020      Accepted manuscript online:  14 September 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604027 and 61704016) and the Fund from Chongqing Technology Innovation and Application Development (Key Industry Research and Development), China (Grant No. cstc2018jszx-cyzd0646).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义) Snapback-free shorted anode LIGBT with controlled anode barrier and resistance 2021 Chin. Phys. B 30 028501

1 Iwamuro N and Laska T 2017 IEEE Trans. Electron Dev. 64 741
2 Jiang H P, Zhang B, Chen W J, Li Z J, Liu C, Rao Z G and Dong B 2012 IEEE Electron Dev. Lett. 33 417
3 Yi B, Jia L, Zhang B K, Chen J J and Xiong Y 2020 IEEE Trans. Electron Dev. 67 2058
4 Deng G Q, Luo X R, Zhou K, He Q Y, Ruan X L, Liu Q, Sun T and Zhang B 2017 Proc. ISPSD 127
5 Huang M M, Li J, Xie C J, Lai L and Gong M 2020 Electron. Lett. 56 153
6 Hu H, Kong M F, Yi B and Chen X B 2020 IEEE Trans. Electron Dev. 67 1059
7 Wu J Y, Huang H M, Yi B, Hu H, Hu H and Chen X B 2020 IEEE J. Electron Dev. Soc. 7 1013
8 Duan B X, Sun L C and Yang Y T 2019 IEEE Electron Dev. Lett. 40 63
9 Zhang B K, Kong M F, Yi B and Chen X B 2020 IEEE Trans. Electron Dev. 67 2020
10 Li J H, Tang Y, Zhang G J, Liu J, Liu K F, Hu B and Li W 2020 IEEE Electron Dev. Lett. 41 573
11 Zhang L, Zhu J, Sun W F, Chen M, Zhao M N, Huang X Q, Chen J J, Qian Y X and Shi L X 2017 IEEE Trans. Electron Dev. 64 1187
12 Chen W Z, Guo Q, He L J, Han Z S, Wang Y C and Li X Y 2017 IEICE Electronics Express 14 1
13 Pathirana V, Udugampola N, Trajkovic T and Udrea F. 2018 IEEE Electron Dev. Lett. 39 866
14 Chen W Z, Huang Y, He L J, Han Z S and Huang Y 2018 Chin. Phys. B 27 088501
15 Luo X R, Yang Y, Sun T, Wei J, Fan D, Ouyang D F, Deng G Q, Yang Y H, Zhang B and Li Z J 2019 IEEE Trans. Electron Dev. 66 1390
16 Tian T, Guo Y F, Yao J F, Zhang J, Wang K and Li M 2019 IEEE J. Electron Dev. Soc. 7 725
17 He Y T, Qiao M and Zhang B 2018 Chin. Phys. B 25 127304
18 Sin J K O and Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45
19 Chul J H, Byeon D S, Oh J K, Han M K and Choi Y I 2000 Proc. ISPSD 149
20 Park J M, Wagner S, Grasser T and Selberherr S 2003 Solid-State Electronics 48 1007
21 Zhang L, Zhu J, Sun W F, Du Y C, Yu H, Huang K Q and Shi L X 2015 Proc. ISPSD 49
22 Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y and Zhang S 2016 IEEE Trans. Electron Dev. 63 2003
23 Chen W Z, Li S, Huang Y, Huang Y and Han Z S 2020 IEEE J. Electron Dev. Soc. In Press
24 `Taurus Medici DAVINCI User's Guides', Synopsys, Mountain View, CA, USA, 2014
25 Zhou K, Sun T, Liu Q, Zhang B, Li Z J and Luo X R 2017 Proc. ISPSD 315
[1] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[4] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[5] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[8] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[9] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[12] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[13] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[14] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[15] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
No Suggested Reading articles found!