Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067502    DOI: 10.1088/1674-1056/24/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon

Du Qian-Heng (杜乾衡)a, Chen Guo-Fu (陈国富)a, Yang Wen-Yun (杨文云)a, Hua Mu-Xin (华慕欣)a, Du Hong-Lin (杜红林)a, Wang Chang-Sheng (王常生)a, Liu Shun-Quan (刘顺荃)a, Han Jing-Zhi (韩景智)a, Zhou Dong (周栋)b, Zhang Yan (张焱)a, Yang Jin-Bo (杨金波)a
a School of Physics, Peking University, Beijing 100871, China;
b Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  The structure and magnetic properties of MnCoSi1-xPx (x=0.05–0.50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower-magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high-temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1·K-1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition.
Keywords:  metamagnetic transition      magnetoelastic coupling      magnetocaloric effect  
Received:  15 December 2014      Revised:  20 January 2015      Accepted manuscript online: 
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275013), the Fund from the National Physics Laboratory, China Academy of Engineering Physics (Grant No. 2013DB01), and the National Key Basic Research Program of China (Grant No. 2010CB833104).
Corresponding Authors:  Du Hong-Lin     E-mail:  duhonglin@pku.edu.cn
About author:  75.30.Kz; 75.30.Sg

Cite this article: 

Du Qian-Heng (杜乾衡), Chen Guo-Fu (陈国富), Yang Wen-Yun (杨文云), Hua Mu-Xin (华慕欣), Du Hong-Lin (杜红林), Wang Chang-Sheng (王常生), Liu Shun-Quan (刘顺荃), Han Jing-Zhi (韩景智), Zhou Dong (周栋), Zhang Yan (张焱), Yang Jin-Bo (杨金波) Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon 2015 Chin. Phys. B 24 067502

[1] Niziol S, Fruchart R and Senateur J 1980 J. Magn. Magn. Mater. 15 481
[2] Becerra C, Shapira Y, Oliveira N Jr and Chang T 1980 Phys. Rev. Lett. 44 1692
[3] Barcza A, Gercsi Z, Knight K and Sandeman K 2010 Phys. Rev. Lett. 104 247202
[4] Sandeman K, Daou R, Özcan S, Durrell J, Mathur N and Fray D 2006 Phys. Rev. B 74 224436
[5] Bińczycka H, Szytula A, Todorović J, Zaleski T and Zięba A 1976 Phys. Status Solidi 35 K69
[6] Barcza A, Gercsi Z, Michor H, Suzuki K, Kockelmann W, Knight K and Sandeman K 2013 Phys. Rev. B 87 064410
[7] Gercsi Z, Hono K and Sandeman K G 2011 Phys. Rev. B 83 174403
[8] Zhang C, Wang D, Cao Q, Han Z, Xuan H and Du Y 2009 J. Phys. D: Appl. Phys. 42 015007
[9] Morrison K, Miyoshi Y, Moore J, Barcza A, Sandeman K, Caplin A and Cohen L 2008 Phys. Rev. B 78 134418
[10] Xu J H, Yang W Y, Du Q H, Xia Y H, Du H L, Yang J B, Wang C S, Han J Z, Liu S Q, Zhang Y and Yang Y C 2014 J. Phys. D: Appl. Phys. 47 065003
[11] Fujii S, Ishida S and Asano S 1988 J. Phys. F: Metal Phys. 18 971
[12] Gercsi Z and Sandeman K 2010 Phys. Rev. B 81 224426
[13] Johnson V 1975 Inorg. Chem. 14 1117
[14] Landrum G A, Hoffmann R, Evers J and Boysen H 1998 Inorg. Chem. 37 5754
[15] Kanematsu K 1962 J. Phys. Soc. Jpn. 17 85
[16] Yan A, Müller K H, Schultz L and Gutfleisch O 2006 J. Appl. Phys. 99 08K903
[17] Sun Y, Guo Y F, Tsujimoto Y, Yang J J, Shen B, Yi W, Matsushita Y, Wang C, Wang X, Li J, Sathish C I and Yamaura K 2013 Inorg. Chem. 52 800
[18] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
[19] Brabers J, Nolten A, Kayzel F, Lenczowski S, Buschow K and Boer F De 1994 Phys. Rev. B 50 16410
[20] Caron L, Trung N and Brück E 2011 Phys. Rev. B 84 020414
[21] Anzai S and Ozawa K 1978 Phys. Rev. B 18 2173
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!