Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067503    DOI: 10.1088/1674-1056/24/6/067503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles

Qiu Qing-Wei (邱庆伟)a, Xu Xiao-Wen (徐晓文)a, He Mang (何芒)a, Zhang Hong-Wang (张洪旺)b
a School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
b Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA
Abstract  

MnFe2O4 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution-phase method. The as-synthesized NPs were coated with a silica shell of 4 nm–5 nm in thickness, enabling the water-solubility and biocompatibility of the NPs. The MnFe2O4 NPs with a size of less than 18 nm exhibit superparamagnetic behavior with high saturated magnetization. The capacity of the heat production was enhanced by increasing particle sizes and radio frequency (RF) field strengths. MnFe2O4/SiO2 NPs with 18-nm magnetic cores showed the highest heat-generation ability under an RF field. These MnFe2O4/SiO2 NPs have great potentiality to cancer treatments, controlled drug releases, and remote controls of single cell functions.

Keywords:  manganese ferrite      magnetic nanoparticles      silica coating      hyperthermia  
Received:  21 January 2015      Revised:  05 February 2015      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.75.-c (Magnetic properties of nanostructures)  
Corresponding Authors:  Qiu Qing-Wei     E-mail:  qiuqingwei@bit.edu.cn
About author:  75.47.Lx; 75.75.-c

Cite this article: 

Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺) Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles 2015 Chin. Phys. B 24 067503

[1] Jeong U, Teng X W, Wang Y, Yang H and Xia Y N 2007 Adv. Mater. 19 33
[2] Xu C J and Sun S H 2013 Adv. Drug. Deliv. Rev. 65 732
[3] Sun C, Lee J S H and Zhang M Q 2008 Adv. Drug. Deliv. Rev. 60 1252
[4] Frey N A, Peng S, Cheng K and Sun S H 2009 Chem. Soc. Rev. 38 2532
[5] Jordan A, Wust P, Fahling H, John W, Hinz A and Felix R 1993 Int. J. Hyperther. 9 51
[6] Huang X H, El-Sayed I H, Qian W and El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115
[7] Liu T Y, Hu S H, Liu D M, Chen S Y and Chen I W 2009 Nano Today 4 52
[8] Meffre A, Mehdaoui B, Kelsen V, Fazzini P F, Carrey J, Lachaize S, Respaud M and Chaudret B 2012 Nano Lett. 12 4722
[9] Yang C, Hong Y L and Gao S 2014 Chin. Phys. B 23 057505
[10] Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C and Taylor C B 1957 Ann. Surg. 146 596
[11] Hergt R, Dutz S, Muller R and Zeisberger M 2006 J. Phys.: Condens. Matter 18 S2919
[12] Gupta A K and Gupta M 2005 Biomaterials 26 3995
[13] Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L and Pellegrino T 2012 ACS Nano 6 3080
[14] Chen R, Christiansen M G and Anikeeva P 2013 ACS Nano 7 8990
[15] Lee J H, Jang J T, Choi J S, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotechnol. 6 418
[16] Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L M, Gougeon M, Chaudret B and Respaud M 2011 Adv. Funct. Mater. 21 4573
[17] Carrey J, Mehdaoui B and Respaud M 2011 J. Appl. Phys. 110 083921
[18] Habib A H, Ondeck C L, Chaudhary P, Bockstaller M R and McHenry M E 2008 J. Appl. Phys. 103 03A307
[19] Kappiyoor R, Liangruksa M, Ganguly R and Puri I K 2010 J. Appl. Phys. 108 094702
[20] Fortin J P, Wilhelm C, Servais J, Menager C, Bacri J C and Gazeau F 2007 J. Am. Chem. Soc. 129 2628
[21] Sun S H and Zeng H 2002 J. Am. Chem. Soc. 124 8204
[22] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G X 2004 J. Am. Chem. Soc. 126 273
[23] Zeng H, Rice P M, Wang S X and Sun S H 2004 J. Am. Chem. Soc. 126 11458
[24] Ding H L, Zhang Y X, Wang S, Xu J M, Xu S C and Li G H 2012 Chem. Mater. 24 4572
[25] Selvan S T, Tan T T and Ying J Y 2005 Adv. Mater. 17 1620
[26] Zhang H, Huang H, He S, Zeng H and Pralle A 2014 Nanoscale 6 13463
[27] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[1] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[2] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[5] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[8] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[9] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[10] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[11] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[12] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[13] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[14] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[15] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
No Suggested Reading articles found!