Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067304    DOI: 10.1088/1674-1056/24/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Finite size effects on the quantum spin Hall state in HgTe quantum wells under two different types of boundary conditions

Cheng Zhi (成志), Chen Rui (陈锐), Zhou Bin (周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin–orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin–orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.
Keywords:  quantum spin Hall state      finite size effect      spin-orbit coupling  
Received:  26 October 2014      Revised:  03 February 2015      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
Corresponding Authors:  Zhou Bin     E-mail:  binzhou@hubu.edu.cn
About author:  73.43.-f; 72.25.Dc; 85.75.-d

Cite this article: 

Cheng Zhi (成志), Chen Rui (陈锐), Zhou Bin (周斌) Finite size effects on the quantum spin Hall state in HgTe quantum wells under two different types of boundary conditions 2015 Chin. Phys. B 24 067304

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[4] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[5] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[6] Yang Y, Xu Z, Sheng L, Wang B, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[7] Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
[8] Zhang Y Y, Shen M, An X T, Sun Q F, Xie X C, Chang K and Li S S 2014 Phys. Rev. B 90 054205
[9] Weber M, Hohenadler M and Assaad F F 2014 Phys. Rev. B 89 205125
[10] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[11] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[12] Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
[13] Brüne C, Roth A, Buhmann H, Hankiewicz E M, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2012 Nat. Phys. 8 485
[14] Nowack K C, Spanton E M, Baenninger M, Kö Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nat. Mater. 12 787
[15] König M, Baenninger M, Garcia A G F, Harjee N, Pruitt B L, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W and Goldhaber-Gordon D 2013 Phys. Rev. X 3 021003
[16] Li J, Chu R L, Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[17] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602
[18] Zhang L B, Zhai F and Chang K 2010 Phys. Rev. B 81 235323
[19] Chen W, Shen R, Sheng L, Wang B G and Xing D Y 2011 Phys. Rev. B 84 115420
[20] Lindner N H, Refael G and Galitski V 2011 Nat. Phys. 7 490
[21] Guo H M, Zhang X L and Feng S P 2012 Chin. Phys. B 21 117301
[22] Zhu H X, Wang T T, Gao J S, Li S, Sun Y J and Liu G L 2014 Chin. Phys. Lett. 31 030503
[23] Pang M and Wu X G 2014 Chin. Phys. B 23 077302
[24] Gao J, Liao W, Zhao H and Zhou G 2014 J. Appl. Phys. 115 023709
[25] Fu H H, Gao J H and Yao K L 2014 Nanotechnology 25 225201
[26] Michetti P, Penteado P H, Egues J C and Recher P 2012 Semicond. Sci. Techol. 27 124007
[27] Yoshimi R, Tsukazaki A, Kikutake K, Checkelsky J G, Takahashi K S, Kawasaki M and Tokura Y 2014 Nat. Mater. 13 253
[28] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[29] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[30] Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402
[31] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
[32] Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448
[33] Cheng Z and Zhou B 2014 Chin. Phys. B 23 037304
[34] Takagaki Y 2012 J. Phys.: Condens. Matter 24 435301
[35] König M, Buhmann H, Molenkamp L W, Hughes T, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
[36] Rothe D G, Reinthaler R W, Liu C X, Molenkamp L W, Zhang S C and Hankiewicz E M 2010 New J. Phys. 12 065012
[37] Krueckl V and Richter K 2012 Semicond. Sci. Techol. 27 124006
[38] Takagaki Y 2012 J. Phys.: Condens. Matter 24 435301
[39] Virtanen P and Recher P 2012 Phys. Rev. B 85 035310
[40] Zou Y L, Zhang L B and Song J T 2013 J. Phys.: Condens. Matter 25 075801
[41] Krueckl V and Richter K 2011 Phys. Rev. Lett. 107 086803
[42] Takagaki Y 2012 Phys. Rev. B 85 155308
[43] Ostrovsky P M, Gornyi I V and Mirlin A D 2012 Phys. Rev. B 86 125323
[44] Weithofer L and Recher P 2013 New J. Phys. 15 085008
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!